利用频繁项集挖掘优化编码位图索引

J. Sainui, S. Vanichayobon, N. Wattanakitrungroj
{"title":"利用频繁项集挖掘优化编码位图索引","authors":"J. Sainui, S. Vanichayobon, N. Wattanakitrungroj","doi":"10.1109/ICCEE.2008.150","DOIUrl":null,"url":null,"abstract":"Indexing techniques based on bitmap representations are well suited to a warehouse system. They significantly improve query processing time by utilizing low-cost Boolean operations and multiple index scans, executing queries by performing simple predicate conditions on the index level before going to the primary data source. To optimize existing Encoded Bitmap Index, in this paper, we apply a data mining technique called frequent itemsets mining to find a well-defined encoding scheme, leading to improve query processing time. Our comparative study show that in the best case the performance of optimizing Encoded Bitmap Index using frequent itemsets mining is better than those found by existing techniques for membership queries from the point of view of space-time trade-off.","PeriodicalId":365473,"journal":{"name":"2008 International Conference on Computer and Electrical Engineering","volume":"547 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Encoded Bitmap Index Using Frequent Itemsets Mining\",\"authors\":\"J. Sainui, S. Vanichayobon, N. Wattanakitrungroj\",\"doi\":\"10.1109/ICCEE.2008.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indexing techniques based on bitmap representations are well suited to a warehouse system. They significantly improve query processing time by utilizing low-cost Boolean operations and multiple index scans, executing queries by performing simple predicate conditions on the index level before going to the primary data source. To optimize existing Encoded Bitmap Index, in this paper, we apply a data mining technique called frequent itemsets mining to find a well-defined encoding scheme, leading to improve query processing time. Our comparative study show that in the best case the performance of optimizing Encoded Bitmap Index using frequent itemsets mining is better than those found by existing techniques for membership queries from the point of view of space-time trade-off.\",\"PeriodicalId\":365473,\"journal\":{\"name\":\"2008 International Conference on Computer and Electrical Engineering\",\"volume\":\"547 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2008.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2008.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于位图表示的索引技术非常适合于仓库系统。它们利用低成本的布尔操作和多个索引扫描,在转到主数据源之前,通过在索引级别上执行简单的谓词条件来执行查询,从而显著改善了查询处理时间。为了优化现有的编码位图索引,本文采用一种称为频繁项集挖掘的数据挖掘技术来寻找定义良好的编码方案,从而提高查询处理时间。我们的比较研究表明,从时空权衡的角度来看,在最佳情况下,使用频繁项集挖掘优化编码位图索引的性能优于现有的成员查询技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Encoded Bitmap Index Using Frequent Itemsets Mining
Indexing techniques based on bitmap representations are well suited to a warehouse system. They significantly improve query processing time by utilizing low-cost Boolean operations and multiple index scans, executing queries by performing simple predicate conditions on the index level before going to the primary data source. To optimize existing Encoded Bitmap Index, in this paper, we apply a data mining technique called frequent itemsets mining to find a well-defined encoding scheme, leading to improve query processing time. Our comparative study show that in the best case the performance of optimizing Encoded Bitmap Index using frequent itemsets mining is better than those found by existing techniques for membership queries from the point of view of space-time trade-off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信