ETL, ELT和反向ETL:一个商业案例研究

Bharat Singhal, A. Aggarwal
{"title":"ETL, ELT和反向ETL:一个商业案例研究","authors":"Bharat Singhal, A. Aggarwal","doi":"10.1109/ICATIECE56365.2022.10046997","DOIUrl":null,"url":null,"abstract":"Most organizations today rely heavily on their data warehouse to make enterprise level decisions. Data Warehouse pulls data from various heterogeneous sources and thus, when setting up a data warehouse, there are three ways to process data: ELT (Extract, Load and Transform), ETL (Extract, Transform and Load) and reverse ETL. It can be challenging to select the best approach when deciding how to implement a data warehouse because it has to do with costs, procedures, performance, and ongoing company improvement. In this paper, we'll be discussing the three approaches and their use cases.","PeriodicalId":199942,"journal":{"name":"2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ETL, ELT and Reverse ETL: A business case Study\",\"authors\":\"Bharat Singhal, A. Aggarwal\",\"doi\":\"10.1109/ICATIECE56365.2022.10046997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most organizations today rely heavily on their data warehouse to make enterprise level decisions. Data Warehouse pulls data from various heterogeneous sources and thus, when setting up a data warehouse, there are three ways to process data: ELT (Extract, Load and Transform), ETL (Extract, Transform and Load) and reverse ETL. It can be challenging to select the best approach when deciding how to implement a data warehouse because it has to do with costs, procedures, performance, and ongoing company improvement. In this paper, we'll be discussing the three approaches and their use cases.\",\"PeriodicalId\":199942,\"journal\":{\"name\":\"2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE)\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICATIECE56365.2022.10046997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATIECE56365.2022.10046997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

今天,大多数组织严重依赖他们的数据仓库来做出企业级决策。数据仓库从各种异构源提取数据,因此,在建立数据仓库时,有三种处理数据的方法:ELT(提取、加载和转换)、ETL(提取、转换和加载)和反向ETL。在决定如何实现数据仓库时,选择最佳方法可能具有挑战性,因为它与成本、过程、性能和持续的公司改进有关。在本文中,我们将讨论这三种方法及其用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ETL, ELT and Reverse ETL: A business case Study
Most organizations today rely heavily on their data warehouse to make enterprise level decisions. Data Warehouse pulls data from various heterogeneous sources and thus, when setting up a data warehouse, there are three ways to process data: ELT (Extract, Load and Transform), ETL (Extract, Transform and Load) and reverse ETL. It can be challenging to select the best approach when deciding how to implement a data warehouse because it has to do with costs, procedures, performance, and ongoing company improvement. In this paper, we'll be discussing the three approaches and their use cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信