基于交叉熵的图像超分辨率算法的投影-上凸集解释

M. Nadar, P. J. Sementilli, B. Hunt
{"title":"基于交叉熵的图像超分辨率算法的投影-上凸集解释","authors":"M. Nadar, P. J. Sementilli, B. Hunt","doi":"10.1364/srs.1995.rwc3","DOIUrl":null,"url":null,"abstract":"Signal recovery problems are generally posed in the form of rigid constraints (constraint sets), flexible constraints (optimization functional) or a combination thereof. Minimum cross-entropy methods1,2 belong to this third category due to an implicit rigid non-negativity constraint. An elegant approach to solving problems of the first category for convex constraint sets is the Projection Onto Convex Sets (POCS)3 technique. POCS has been limited primarily to least-squares projections, although other distance measures have been proposed.4 In this paper, minimum cross-entropy methods are interpreted as parallel cross-entropic POCS algorithms. This interpretation provides a theoretical basis for including rigid constraints in iterative super-resolution algorithms.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Projection-Onto-Convex-Sets Interpretation of Cross-Entropy Based Image Super-Resolution Algorithms\",\"authors\":\"M. Nadar, P. J. Sementilli, B. Hunt\",\"doi\":\"10.1364/srs.1995.rwc3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal recovery problems are generally posed in the form of rigid constraints (constraint sets), flexible constraints (optimization functional) or a combination thereof. Minimum cross-entropy methods1,2 belong to this third category due to an implicit rigid non-negativity constraint. An elegant approach to solving problems of the first category for convex constraint sets is the Projection Onto Convex Sets (POCS)3 technique. POCS has been limited primarily to least-squares projections, although other distance measures have been proposed.4 In this paper, minimum cross-entropy methods are interpreted as parallel cross-entropic POCS algorithms. This interpretation provides a theoretical basis for including rigid constraints in iterative super-resolution algorithms.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1995.rwc3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rwc3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信号恢复问题通常以刚性约束(约束集)、柔性约束(优化函数)或其组合的形式提出。最小交叉熵方法1,2由于隐含刚性非负性约束而属于第三类。求解第一类凸约束集问题的一种优雅方法是凸集投影(POCS)3技术。虽然也提出了其他距离测量方法,但POCS主要限于最小二乘预估本文将最小交叉熵方法解释为并行交叉熵POCS算法。这一解释为在迭代超分辨算法中加入刚性约束提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Projection-Onto-Convex-Sets Interpretation of Cross-Entropy Based Image Super-Resolution Algorithms
Signal recovery problems are generally posed in the form of rigid constraints (constraint sets), flexible constraints (optimization functional) or a combination thereof. Minimum cross-entropy methods1,2 belong to this third category due to an implicit rigid non-negativity constraint. An elegant approach to solving problems of the first category for convex constraint sets is the Projection Onto Convex Sets (POCS)3 technique. POCS has been limited primarily to least-squares projections, although other distance measures have been proposed.4 In this paper, minimum cross-entropy methods are interpreted as parallel cross-entropic POCS algorithms. This interpretation provides a theoretical basis for including rigid constraints in iterative super-resolution algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信