Reed-Muller码的代数结构

Harinaivo Andriatahiny
{"title":"Reed-Muller码的代数结构","authors":"Harinaivo Andriatahiny","doi":"10.26493/2590-9770.1417.02a","DOIUrl":null,"url":null,"abstract":"It is known that the Reed-Muller codes over a prime field may be described as the radical powers of a modular group algebra. In this paper, we give a new proof of the same result in a quotient of a polynomial ring. Special elements in a prime field are studied. An interpolation polynomial is introduced in order to characterize the coefficients of the Jennings polynomials.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On algebraic structure of the Reed-Muller codes\",\"authors\":\"Harinaivo Andriatahiny\",\"doi\":\"10.26493/2590-9770.1417.02a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that the Reed-Muller codes over a prime field may be described as the radical powers of a modular group algebra. In this paper, we give a new proof of the same result in a quotient of a polynomial ring. Special elements in a prime field are studied. An interpolation polynomial is introduced in order to characterize the coefficients of the Jennings polynomials.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1417.02a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1417.02a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已知素域上的里德-穆勒码可以描述为模群代数的根幂。本文在多项式环的商上给出了相同结果的一个新的证明。研究了素数域中的特殊元素。为了表征詹宁斯多项式的系数,引入了插值多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On algebraic structure of the Reed-Muller codes
It is known that the Reed-Muller codes over a prime field may be described as the radical powers of a modular group algebra. In this paper, we give a new proof of the same result in a quotient of a polynomial ring. Special elements in a prime field are studied. An interpolation polynomial is introduced in order to characterize the coefficients of the Jennings polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信