异构集群上数据集的统计分析框架

R. Cariño, I. Banicescu
{"title":"异构集群上数据集的统计分析框架","authors":"R. Cariño, I. Banicescu","doi":"10.1109/CLUSTR.2005.347019","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for the statistical analysis of multiple related datasets on heterogeneous clusters. The set of processors assigned to the framework are partitioned into groups according to rack locations, with the group sizes being chosen to match the degree of concurrency in the analysis procedure. The datasets are initially divided among the groups. Dynamic loop scheduling is employed to address load imbalance arising from the differences in computational powers of groups, the variability of dataset sizes, and the unpredictable irregularities in the cluster environment. Results of preliminary tests indicate the effectiveness of the framework in fitting gamma-ray burst datasets with vector functional coefficient autoregressive time series models on 64 processors of a heterogeneous general-purpose Linux cluster","PeriodicalId":255312,"journal":{"name":"2005 IEEE International Conference on Cluster Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Framework for Statistical Analysis of Datasets on Heterogeneous Clusters\",\"authors\":\"R. Cariño, I. Banicescu\",\"doi\":\"10.1109/CLUSTR.2005.347019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework for the statistical analysis of multiple related datasets on heterogeneous clusters. The set of processors assigned to the framework are partitioned into groups according to rack locations, with the group sizes being chosen to match the degree of concurrency in the analysis procedure. The datasets are initially divided among the groups. Dynamic loop scheduling is employed to address load imbalance arising from the differences in computational powers of groups, the variability of dataset sizes, and the unpredictable irregularities in the cluster environment. Results of preliminary tests indicate the effectiveness of the framework in fitting gamma-ray burst datasets with vector functional coefficient autoregressive time series models on 64 processors of a heterogeneous general-purpose Linux cluster\",\"PeriodicalId\":255312,\"journal\":{\"name\":\"2005 IEEE International Conference on Cluster Computing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2005.347019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2005.347019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一个异构集群上多个相关数据集的统计分析框架。分配给框架的处理器集根据机架位置划分为组,选择组的大小以匹配分析过程中的并发程度。数据集最初被分成不同的组。动态循环调度是为了解决由于组的计算能力差异、数据集大小的可变性以及集群环境中不可预测的不规则性而引起的负载不平衡。初步测试结果表明,该框架在异构通用Linux集群的64个处理器上具有向量泛函系数自回归时间序列模型拟合伽马射线暴数据集的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Statistical Analysis of Datasets on Heterogeneous Clusters
This paper proposes a framework for the statistical analysis of multiple related datasets on heterogeneous clusters. The set of processors assigned to the framework are partitioned into groups according to rack locations, with the group sizes being chosen to match the degree of concurrency in the analysis procedure. The datasets are initially divided among the groups. Dynamic loop scheduling is employed to address load imbalance arising from the differences in computational powers of groups, the variability of dataset sizes, and the unpredictable irregularities in the cluster environment. Results of preliminary tests indicate the effectiveness of the framework in fitting gamma-ray burst datasets with vector functional coefficient autoregressive time series models on 64 processors of a heterogeneous general-purpose Linux cluster
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信