Kemeng Ji, Jiuhui Han, Bo Wang, H. Dai, Yuan Tian, A. Hirata, Lijing Kang, Pan Liu, T. Fujita, Yoshikazu Ito, Y. Oyama
{"title":"用于大容量超高速率储能的纳米晶C-Ni杂化纳米多孔整体材料","authors":"Kemeng Ji, Jiuhui Han, Bo Wang, H. Dai, Yuan Tian, A. Hirata, Lijing Kang, Pan Liu, T. Fujita, Yoshikazu Ito, Y. Oyama","doi":"10.2139/ssrn.3207211","DOIUrl":null,"url":null,"abstract":"Graphene material is promising for harmonizing supercapacitor-like power density and battery-level energy density into one electrochemical energy storage (EES) system. Cost-effective, controlled, and massive production of graphene material and its successful application in practical EES are two significant challenges yet to be resolved. By developing a simple nickel nitrate-based hard-template preparation, this study demonstrates the smart design of nanocrystalline C-Ni hybrid monoliths with three-dimensionally ordered macroporous (3DOM) frameworks for high-efficiency EES. The abundant Li-storage sites and mixed high electronic and ionic conductivities grant such freestanding C-Ni composite electrode material large reversible capacity and high-rate capability through thousands of cycles even at a great thickness and using no extra current collector. This 3DOM strategy will facilitate real EES applications of graphene materials, and the yielded nanocrystalline-graphene material is promising to replace graphite anodes in current commercial LIBs with limited performances.","PeriodicalId":360688,"journal":{"name":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanocrystalline C-Ni Hybrid Nanoporous Monoliths for Large-Capacity and Ultrahigh-Rate Energy Storage\",\"authors\":\"Kemeng Ji, Jiuhui Han, Bo Wang, H. Dai, Yuan Tian, A. Hirata, Lijing Kang, Pan Liu, T. Fujita, Yoshikazu Ito, Y. Oyama\",\"doi\":\"10.2139/ssrn.3207211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene material is promising for harmonizing supercapacitor-like power density and battery-level energy density into one electrochemical energy storage (EES) system. Cost-effective, controlled, and massive production of graphene material and its successful application in practical EES are two significant challenges yet to be resolved. By developing a simple nickel nitrate-based hard-template preparation, this study demonstrates the smart design of nanocrystalline C-Ni hybrid monoliths with three-dimensionally ordered macroporous (3DOM) frameworks for high-efficiency EES. The abundant Li-storage sites and mixed high electronic and ionic conductivities grant such freestanding C-Ni composite electrode material large reversible capacity and high-rate capability through thousands of cycles even at a great thickness and using no extra current collector. This 3DOM strategy will facilitate real EES applications of graphene materials, and the yielded nanocrystalline-graphene material is promising to replace graphite anodes in current commercial LIBs with limited performances.\",\"PeriodicalId\":360688,\"journal\":{\"name\":\"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3207211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3207211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanocrystalline C-Ni Hybrid Nanoporous Monoliths for Large-Capacity and Ultrahigh-Rate Energy Storage
Graphene material is promising for harmonizing supercapacitor-like power density and battery-level energy density into one electrochemical energy storage (EES) system. Cost-effective, controlled, and massive production of graphene material and its successful application in practical EES are two significant challenges yet to be resolved. By developing a simple nickel nitrate-based hard-template preparation, this study demonstrates the smart design of nanocrystalline C-Ni hybrid monoliths with three-dimensionally ordered macroporous (3DOM) frameworks for high-efficiency EES. The abundant Li-storage sites and mixed high electronic and ionic conductivities grant such freestanding C-Ni composite electrode material large reversible capacity and high-rate capability through thousands of cycles even at a great thickness and using no extra current collector. This 3DOM strategy will facilitate real EES applications of graphene materials, and the yielded nanocrystalline-graphene material is promising to replace graphite anodes in current commercial LIBs with limited performances.