反卷积的自适应步长动量法

Trung Vu, R. Raich
{"title":"反卷积的自适应步长动量法","authors":"Trung Vu, R. Raich","doi":"10.1109/SSP.2018.8450762","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an adaptive step size schedule that can significantly improve the convergence rate of momentum method for deconvolution applications. We provide analysis to show that the proposed method can asymptotically recover the optimal rate of convergence for first-order gradient methods applied to minimize smooth convex functions. In a convolution setting, we demonstrate that our adaptive schedule can be implemented efficiently without adding computational complexity to traditional gradient schemes.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Step Size Momentum Method For Deconvolution\",\"authors\":\"Trung Vu, R. Raich\",\"doi\":\"10.1109/SSP.2018.8450762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an adaptive step size schedule that can significantly improve the convergence rate of momentum method for deconvolution applications. We provide analysis to show that the proposed method can asymptotically recover the optimal rate of convergence for first-order gradient methods applied to minimize smooth convex functions. In a convolution setting, we demonstrate that our adaptive schedule can be implemented efficiently without adding computational complexity to traditional gradient schemes.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文引入了一种自适应步长调度,可以显著提高动量法在反褶积应用中的收敛速度。我们提供的分析表明,该方法可以渐近恢复用于最小化光滑凸函数的一阶梯度方法的最优收敛速度。在卷积设置中,我们证明了我们的自适应调度可以有效地实现,而不会增加传统梯度方案的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Step Size Momentum Method For Deconvolution
In this paper, we introduce an adaptive step size schedule that can significantly improve the convergence rate of momentum method for deconvolution applications. We provide analysis to show that the proposed method can asymptotically recover the optimal rate of convergence for first-order gradient methods applied to minimize smooth convex functions. In a convolution setting, we demonstrate that our adaptive schedule can be implemented efficiently without adding computational complexity to traditional gradient schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信