基于样本支持向量机的视觉跟踪在线集成

Xin Chen, Hefeng Wu, Xuefeng Xie
{"title":"基于样本支持向量机的视觉跟踪在线集成","authors":"Xin Chen, Hefeng Wu, Xuefeng Xie","doi":"10.1109/ICDH.2012.78","DOIUrl":null,"url":null,"abstract":"In this paper, we put forward a robust algorithm for visual tracking based on an ensemble of Exemplar-SVM classifiers. First of all, a simple yet effective Exemplar-SVM method originating from object detection is adapted for visual tracking, where the linear SVM classifier is trained using the tracked object as the exemplar and its surroundings as negatives. Secondly, we propose an online ensemble tracker, which integrates a set of Exemplar-SVMs and updates automatically online. Making good use of history information, the proposed algorithm achieves better discrimination of the object and its surrounding background. The experimental results prove that the proposed algorithm is robust and effective.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Ensemble of Exemplar-SVMs for Visual Tracking\",\"authors\":\"Xin Chen, Hefeng Wu, Xuefeng Xie\",\"doi\":\"10.1109/ICDH.2012.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we put forward a robust algorithm for visual tracking based on an ensemble of Exemplar-SVM classifiers. First of all, a simple yet effective Exemplar-SVM method originating from object detection is adapted for visual tracking, where the linear SVM classifier is trained using the tracked object as the exemplar and its surroundings as negatives. Secondly, we propose an online ensemble tracker, which integrates a set of Exemplar-SVMs and updates automatically online. Making good use of history information, the proposed algorithm achieves better discrimination of the object and its surrounding background. The experimental results prove that the proposed algorithm is robust and effective.\",\"PeriodicalId\":308799,\"journal\":{\"name\":\"2012 Fourth International Conference on Digital Home\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Digital Home\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2012.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于范例-支持向量机分类器集成的鲁棒视觉跟踪算法。首先,将一种源自目标检测的简单有效的样例-支持向量机方法应用于视觉跟踪,将被跟踪的目标作为样例,将其周围环境作为负极来训练线性支持向量机分类器。其次,我们提出了一种在线集成跟踪器,它集成了一组范例支持向量机并在线自动更新。该算法充分利用历史信息,实现了对目标及其周围背景的较好识别。实验结果证明了该算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Ensemble of Exemplar-SVMs for Visual Tracking
In this paper, we put forward a robust algorithm for visual tracking based on an ensemble of Exemplar-SVM classifiers. First of all, a simple yet effective Exemplar-SVM method originating from object detection is adapted for visual tracking, where the linear SVM classifier is trained using the tracked object as the exemplar and its surroundings as negatives. Secondly, we propose an online ensemble tracker, which integrates a set of Exemplar-SVMs and updates automatically online. Making good use of history information, the proposed algorithm achieves better discrimination of the object and its surrounding background. The experimental results prove that the proposed algorithm is robust and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信