MHD库埃特流中的超速喷气机

K. Mizerski
{"title":"MHD库埃特流中的超速喷气机","authors":"K. Mizerski","doi":"10.5772/INTECHOPEN.79005","DOIUrl":null,"url":null,"abstract":"A magnetohydrodynamic flow of a viscous and conducting fluid confined between two parallel differentially moving boundaries is considered. The whole system is in a strong magnetic field chosen in such a way that the Hartmann boundary layers which form in this problem become singular at the points where the magnetic field becomes tangent to the boundary. Two geometriesaretaken into account: plane and spherical . Withinthe classof such configurations, the velocity field of the fluid and the influence of the conductivity of the boundaries on the fluid ’ s motion are reviewed here. In the region of singularity, where the magnetic field is tangent to the boundary, the fluid ’ s velocity exceeds that of the moving boundary. The effect of nonzero conductivity of the boundaries on the super-speeding jets is vital and has been enlightened in a series of papers, including experimental and theoretical findings.The mechanism of the formation of super-speeding jets in the consideredconfigura- tions has been explained, which is based on strong Hartmann currents allowed to enter the boundarylayerduetothesingularity.Inthecaseofbothperfectlyconductingboundaries,the super velocity wasshown to beasstrong asto scale with theHartmannnumberas O M 1 = 2 (cid:1) (cid:3) .","PeriodicalId":346732,"journal":{"name":"Fluid Flow Problems","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Speeding Jets in MHD Couette Flow\",\"authors\":\"K. Mizerski\",\"doi\":\"10.5772/INTECHOPEN.79005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A magnetohydrodynamic flow of a viscous and conducting fluid confined between two parallel differentially moving boundaries is considered. The whole system is in a strong magnetic field chosen in such a way that the Hartmann boundary layers which form in this problem become singular at the points where the magnetic field becomes tangent to the boundary. Two geometriesaretaken into account: plane and spherical . Withinthe classof such configurations, the velocity field of the fluid and the influence of the conductivity of the boundaries on the fluid ’ s motion are reviewed here. In the region of singularity, where the magnetic field is tangent to the boundary, the fluid ’ s velocity exceeds that of the moving boundary. The effect of nonzero conductivity of the boundaries on the super-speeding jets is vital and has been enlightened in a series of papers, including experimental and theoretical findings.The mechanism of the formation of super-speeding jets in the consideredconfigura- tions has been explained, which is based on strong Hartmann currents allowed to enter the boundarylayerduetothesingularity.Inthecaseofbothperfectlyconductingboundaries,the super velocity wasshown to beasstrong asto scale with theHartmannnumberas O M 1 = 2 (cid:1) (cid:3) .\",\"PeriodicalId\":346732,\"journal\":{\"name\":\"Fluid Flow Problems\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Flow Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Flow Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了粘性导电流体在两个平行的差分边界之间的磁流体动力学流动。整个系统处于一个强磁场中,在这个问题中形成的哈特曼边界层在磁场与边界相切的点上变得奇异。考虑了两种几何形状:平面和球面。在这类结构中,本文回顾了流体的速度场和边界的电导率对流体运动的影响。在奇异区,磁场与边界相切,流体的速度超过运动边界的速度。边界的非零电导率对超高速射流的影响是至关重要的,已经在一系列的论文中得到了启发,包括实验和理论发现。在考虑的结构中,超速射流的形成机制已经得到了解释,这是基于强哈特曼流由于这些奇点而被允许进入边界层。在两个完全导电边界的情况下,超高速显示出与哈特曼数O m1 = 2 (cid:1) (cid:3)成比例的强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Speeding Jets in MHD Couette Flow
A magnetohydrodynamic flow of a viscous and conducting fluid confined between two parallel differentially moving boundaries is considered. The whole system is in a strong magnetic field chosen in such a way that the Hartmann boundary layers which form in this problem become singular at the points where the magnetic field becomes tangent to the boundary. Two geometriesaretaken into account: plane and spherical . Withinthe classof such configurations, the velocity field of the fluid and the influence of the conductivity of the boundaries on the fluid ’ s motion are reviewed here. In the region of singularity, where the magnetic field is tangent to the boundary, the fluid ’ s velocity exceeds that of the moving boundary. The effect of nonzero conductivity of the boundaries on the super-speeding jets is vital and has been enlightened in a series of papers, including experimental and theoretical findings.The mechanism of the formation of super-speeding jets in the consideredconfigura- tions has been explained, which is based on strong Hartmann currents allowed to enter the boundarylayerduetothesingularity.Inthecaseofbothperfectlyconductingboundaries,the super velocity wasshown to beasstrong asto scale with theHartmannnumberas O M 1 = 2 (cid:1) (cid:3) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信