Carmen Magariños, Paula Lopez-Otero, Laura Docío Fernández, E. R. Banga, C. García-Mateo, D. Erro
{"title":"说话人去识别变换函数的分段线性定义","authors":"Carmen Magariños, Paula Lopez-Otero, Laura Docío Fernández, E. R. Banga, C. García-Mateo, D. Erro","doi":"10.1109/SPLIM.2016.7528408","DOIUrl":null,"url":null,"abstract":"The main drawback of speaker de-identification approaches using voice conversion techniques is the need for parallel corpora to train transformation functions between the source and target speakers. In this paper, a voice conversion approach that does not require training any parameters is proposed: it consists in manually defining frequency warping (FW) based transformations by using piecewise linear approximations. An analysis of the de-identification capabilities of the proposed approach using FW only or combined with FW modification and spectral amplitude scaling (AS) was performed. Experimental results show that, using the manually defined transformations using only FW, it is not possible to obtain de-identified natural sounding speech. Nevertheless, when modifying the FW, both de-identification accuracy and naturalness increase to a great extent. A slight improvement in de-identification was also obtained when applying spectral amplitude scaling.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"459 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Piecewise linear definition of transformation functions for speaker de-identification\",\"authors\":\"Carmen Magariños, Paula Lopez-Otero, Laura Docío Fernández, E. R. Banga, C. García-Mateo, D. Erro\",\"doi\":\"10.1109/SPLIM.2016.7528408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main drawback of speaker de-identification approaches using voice conversion techniques is the need for parallel corpora to train transformation functions between the source and target speakers. In this paper, a voice conversion approach that does not require training any parameters is proposed: it consists in manually defining frequency warping (FW) based transformations by using piecewise linear approximations. An analysis of the de-identification capabilities of the proposed approach using FW only or combined with FW modification and spectral amplitude scaling (AS) was performed. Experimental results show that, using the manually defined transformations using only FW, it is not possible to obtain de-identified natural sounding speech. Nevertheless, when modifying the FW, both de-identification accuracy and naturalness increase to a great extent. A slight improvement in de-identification was also obtained when applying spectral amplitude scaling.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"459 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piecewise linear definition of transformation functions for speaker de-identification
The main drawback of speaker de-identification approaches using voice conversion techniques is the need for parallel corpora to train transformation functions between the source and target speakers. In this paper, a voice conversion approach that does not require training any parameters is proposed: it consists in manually defining frequency warping (FW) based transformations by using piecewise linear approximations. An analysis of the de-identification capabilities of the proposed approach using FW only or combined with FW modification and spectral amplitude scaling (AS) was performed. Experimental results show that, using the manually defined transformations using only FW, it is not possible to obtain de-identified natural sounding speech. Nevertheless, when modifying the FW, both de-identification accuracy and naturalness increase to a great extent. A slight improvement in de-identification was also obtained when applying spectral amplitude scaling.