空间数据的异方差贝叶斯点源模型

C. Mauro, G. Mariagrazia, I. Luigi
{"title":"空间数据的异方差贝叶斯点源模型","authors":"C. Mauro, G. Mariagrazia, I. Luigi","doi":"10.1109/ITI.2004.241606","DOIUrl":null,"url":null,"abstract":"We introduce a Bayesian point source model which may be useful for modelling spatial data. It may provide a simple explanatory model for some data, whilst in other cases it may give a parsimonious representation. The model assumes that there are point sources (or sinks), usually at unknown positions, and that the mean value at a site depends on the distance from these sources. We discuss the general form of the model, and the MCMC approach for estimating model parameters. We demonstrate the methodology applying the model to a real data set","PeriodicalId":320305,"journal":{"name":"26th International Conference on Information Technology Interfaces, 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroscedastic Bayesian point source model for spatial data\",\"authors\":\"C. Mauro, G. Mariagrazia, I. Luigi\",\"doi\":\"10.1109/ITI.2004.241606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Bayesian point source model which may be useful for modelling spatial data. It may provide a simple explanatory model for some data, whilst in other cases it may give a parsimonious representation. The model assumes that there are point sources (or sinks), usually at unknown positions, and that the mean value at a site depends on the distance from these sources. We discuss the general form of the model, and the MCMC approach for estimating model parameters. We demonstrate the methodology applying the model to a real data set\",\"PeriodicalId\":320305,\"journal\":{\"name\":\"26th International Conference on Information Technology Interfaces, 2004.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Information Technology Interfaces, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITI.2004.241606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Information Technology Interfaces, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2004.241606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个贝叶斯点源模型,它可以用于空间数据的建模。它可能为某些数据提供一个简单的解释模型,而在其他情况下,它可能给出一个简洁的表示。该模型假设存在点源(或汇),通常在未知位置,并且一个地点的平均值取决于与这些源的距离。我们讨论了模型的一般形式,以及估计模型参数的MCMC方法。我们将该模型应用于实际数据集来演示该方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heteroscedastic Bayesian point source model for spatial data
We introduce a Bayesian point source model which may be useful for modelling spatial data. It may provide a simple explanatory model for some data, whilst in other cases it may give a parsimonious representation. The model assumes that there are point sources (or sinks), usually at unknown positions, and that the mean value at a site depends on the distance from these sources. We discuss the general form of the model, and the MCMC approach for estimating model parameters. We demonstrate the methodology applying the model to a real data set
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信