运用自适应进化策略预测泰国证券交易所

S. Rimcharoen, D. Sutivong, P. Chongstitvatana
{"title":"运用自适应进化策略预测泰国证券交易所","authors":"S. Rimcharoen, D. Sutivong, P. Chongstitvatana","doi":"10.1109/ICTAI.2005.99","DOIUrl":null,"url":null,"abstract":"In this paper we present a prediction process of the Stock Exchange of Thailand index using adaptive evolution strategies. The prediction process does not require the knowledge of the functional form a priori. In each recursion step, genetic algorithm is used to evolve the structure of the prediction function, whereas the coefficient is evolved by evolution strategies. The proposed method has been shown to successfully predict the Stock Exchange of Thailand and returns an error less than 3%. This methodology is also a tool for knowledge discovery in a specific application. We have found that the SET index can be reasonably forecasted with only two factors: the Hang Seng index and minimum loan rate. The proposed method also achieves a lower prediction error when compared with multiple regression method","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Prediction of the Stock Exchange of Thailand using adaptive evolution strategies\",\"authors\":\"S. Rimcharoen, D. Sutivong, P. Chongstitvatana\",\"doi\":\"10.1109/ICTAI.2005.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a prediction process of the Stock Exchange of Thailand index using adaptive evolution strategies. The prediction process does not require the knowledge of the functional form a priori. In each recursion step, genetic algorithm is used to evolve the structure of the prediction function, whereas the coefficient is evolved by evolution strategies. The proposed method has been shown to successfully predict the Stock Exchange of Thailand and returns an error less than 3%. This methodology is also a tool for knowledge discovery in a specific application. We have found that the SET index can be reasonably forecasted with only two factors: the Hang Seng index and minimum loan rate. The proposed method also achieves a lower prediction error when compared with multiple regression method\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文采用自适应进化策略对泰国证券交易所指数进行预测。预测过程不需要先验的函数形式知识。在每个递归步骤中,使用遗传算法来进化预测函数的结构,而系数则通过进化策略来进化。该方法已被证明能够成功地预测泰国证券交易所,并且返回的误差小于3%。这种方法也是在特定应用中发现知识的工具。我们发现,恒生指数和最低贷款利率两个因素就可以合理地预测SET指数。与多元回归方法相比,该方法具有较低的预测误差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the Stock Exchange of Thailand using adaptive evolution strategies
In this paper we present a prediction process of the Stock Exchange of Thailand index using adaptive evolution strategies. The prediction process does not require the knowledge of the functional form a priori. In each recursion step, genetic algorithm is used to evolve the structure of the prediction function, whereas the coefficient is evolved by evolution strategies. The proposed method has been shown to successfully predict the Stock Exchange of Thailand and returns an error less than 3%. This methodology is also a tool for knowledge discovery in a specific application. We have found that the SET index can be reasonably forecasted with only two factors: the Hang Seng index and minimum loan rate. The proposed method also achieves a lower prediction error when compared with multiple regression method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信