阿罗不可能定理的一种分布式组合拓扑方法

S. Rajsbaum, A. Raventós-Pujol
{"title":"阿罗不可能定理的一种分布式组合拓扑方法","authors":"S. Rajsbaum, A. Raventós-Pujol","doi":"10.1145/3519270.3538433","DOIUrl":null,"url":null,"abstract":"Baryshnikov presented a remarkable algebraic topology proof of Arrow's impossibility theorem trying to understand the underlying reason behind the numerous proofs of this fundamental result of social choice theory. We present here a novel combinatorial topology approach that does not use advanced mathematics, while giving a geometric intuition of the impossibility. This exposes a remarkable connection with distributed computing techniques. We study in detail the case of two voters, n=2, and three alternatives, |X|=3, and show that Arrow's impossibility is closely related to the index lemma. Also, we study the domain restrictions that avoid the impossibility. Finally, we explain why the case of n=2 and |X|=3 is where this interesting geometry happens, by giving a simple proof that this case implies Arrow's impossibility for any |X| ≥ 3 and any finite n ≥ 2.","PeriodicalId":182444,"journal":{"name":"Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Distributed Combinatorial Topology Approach to Arrow's Impossibility Theorem\",\"authors\":\"S. Rajsbaum, A. Raventós-Pujol\",\"doi\":\"10.1145/3519270.3538433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Baryshnikov presented a remarkable algebraic topology proof of Arrow's impossibility theorem trying to understand the underlying reason behind the numerous proofs of this fundamental result of social choice theory. We present here a novel combinatorial topology approach that does not use advanced mathematics, while giving a geometric intuition of the impossibility. This exposes a remarkable connection with distributed computing techniques. We study in detail the case of two voters, n=2, and three alternatives, |X|=3, and show that Arrow's impossibility is closely related to the index lemma. Also, we study the domain restrictions that avoid the impossibility. Finally, we explain why the case of n=2 and |X|=3 is where this interesting geometry happens, by giving a simple proof that this case implies Arrow's impossibility for any |X| ≥ 3 and any finite n ≥ 2.\",\"PeriodicalId\":182444,\"journal\":{\"name\":\"Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3519270.3538433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519270.3538433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Baryshnikov提出了阿罗不可能定理的一个显著的代数拓扑证明,试图理解这一社会选择理论基本结果的众多证明背后的潜在原因。我们在这里提出了一种新的组合拓扑方法,它不使用高等数学,同时给出了不可能的几何直觉。这暴露了与分布式计算技术的显著联系。我们详细研究了两个投票人n=2和三个备选方案|X|=3的情况,并证明了阿罗的不可能性与指数引理密切相关。同时,我们还研究了避免不可能性的域约束。最后,我们通过给出一个简单的证明来解释为什么n=2和|X|=3的情况是这个有趣的几何现象发生的地方,这个证明表明对于任何|X|≥3和任何有限n≥2,阿罗定理是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Combinatorial Topology Approach to Arrow's Impossibility Theorem
Baryshnikov presented a remarkable algebraic topology proof of Arrow's impossibility theorem trying to understand the underlying reason behind the numerous proofs of this fundamental result of social choice theory. We present here a novel combinatorial topology approach that does not use advanced mathematics, while giving a geometric intuition of the impossibility. This exposes a remarkable connection with distributed computing techniques. We study in detail the case of two voters, n=2, and three alternatives, |X|=3, and show that Arrow's impossibility is closely related to the index lemma. Also, we study the domain restrictions that avoid the impossibility. Finally, we explain why the case of n=2 and |X|=3 is where this interesting geometry happens, by giving a simple proof that this case implies Arrow's impossibility for any |X| ≥ 3 and any finite n ≥ 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信