皮肤检测的统计模型

B. Jedynak, Huicheng Zheng, M. Daoudi
{"title":"皮肤检测的统计模型","authors":"B. Jedynak, Huicheng Zheng, M. Daoudi","doi":"10.1109/CVPRW.2003.10094","DOIUrl":null,"url":null,"abstract":"We consider a sequence of three models for skin detection built from a large collection of labelled images. Each model is a maximum entropy model with respect to constraints concerning marginal distributions. Our models are nested. The first model is well known from practitioners. Pixels are considered as independent. The second model is a Hidden Markov Model. It includes constraints that force smoothness of the solution. The third model is a first order model. The full color gradient is included. Parameter estimation as well as optimization cannot be tackled without approximations. We use thoroughly Bethe tree approximation of the pixel lattice. Within it , parameter estimation is eradicated and the belief propagation algorithm permits to obtain exact and fast solution for skin probability at pixel locations. We then assess the performance on the Compaq database.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Statistical Models for Skin Detection\",\"authors\":\"B. Jedynak, Huicheng Zheng, M. Daoudi\",\"doi\":\"10.1109/CVPRW.2003.10094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a sequence of three models for skin detection built from a large collection of labelled images. Each model is a maximum entropy model with respect to constraints concerning marginal distributions. Our models are nested. The first model is well known from practitioners. Pixels are considered as independent. The second model is a Hidden Markov Model. It includes constraints that force smoothness of the solution. The third model is a first order model. The full color gradient is included. Parameter estimation as well as optimization cannot be tackled without approximations. We use thoroughly Bethe tree approximation of the pixel lattice. Within it , parameter estimation is eradicated and the belief propagation algorithm permits to obtain exact and fast solution for skin probability at pixel locations. We then assess the performance on the Compaq database.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"386 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们考虑从大量标记图像中构建的三个皮肤检测模型序列。每个模型都是关于边际分布约束的最大熵模型。我们的模型是嵌套的。第一个模型为实践者所熟知。像素被认为是独立的。第二个模型是隐马尔可夫模型。它包括强制解决方案平滑的约束。第三个模型是一阶模型。包括完整的颜色渐变。参数估计和优化不能没有近似处理。我们彻底使用贝特树近似像素点阵。在该算法中,消除了参数估计,并采用信念传播算法,可以在像素位置精确、快速地求解皮肤概率。然后我们在康柏数据库上评估性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Models for Skin Detection
We consider a sequence of three models for skin detection built from a large collection of labelled images. Each model is a maximum entropy model with respect to constraints concerning marginal distributions. Our models are nested. The first model is well known from practitioners. Pixels are considered as independent. The second model is a Hidden Markov Model. It includes constraints that force smoothness of the solution. The third model is a first order model. The full color gradient is included. Parameter estimation as well as optimization cannot be tackled without approximations. We use thoroughly Bethe tree approximation of the pixel lattice. Within it , parameter estimation is eradicated and the belief propagation algorithm permits to obtain exact and fast solution for skin probability at pixel locations. We then assess the performance on the Compaq database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信