Zhenning Guo, Peipei Ge, Yiqi Fang, Yan Dou, Xiaoyang Yu, Jiguo Wang, Q. Gong, Yunquan Liu
{"title":"探测CO分子的分子框架、维格纳时延和电子波包相位结构","authors":"Zhenning Guo, Peipei Ge, Yiqi Fang, Yan Dou, Xiaoyang Yu, Jiguo Wang, Q. Gong, Yunquan Liu","doi":"10.34133/2022/9802917","DOIUrl":null,"url":null,"abstract":"The time delay of photoelectron emission serves as a fundamental building block to understand the ultrafast electron emission dynamics in strong-field physics. Here, we study the photoelectron angular streaking of CO molecules by using two-color (400+800 nm) corotating circularly polarized fields. By coincidently measuring photoelectrons with the dissociative ions, we present molecular frame photoelectron angular distributions with respect to the instantaneous driving electric field signatures. We develop a semiclassical nonadiabatic molecular quantum-trajectory Monte Carlo (MO-QTMC) model that fully captures the experimental observations and further ab initio simulations. We disentangle the orientation-resolved contribution of the anisotropic ionic potential and the molecular orbital structure on the measured photoelectron angular distributions. Furthermore, by analyzing the photoelectron interference patterns, we extract the sub-Coulomb-barrier phase distribution of the photoelectron wavepacket and reconstruct the orientation- and energy-resolved Wigner time delay in the molecular frame. Holographic angular streaking with bicircular fields can be used for probing polyatomic molecules in the future.","PeriodicalId":268204,"journal":{"name":"Ultrafast Science","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Probing Molecular Frame Wigner Time Delay and Electron Wavepacket Phase Structure of CO Molecule\",\"authors\":\"Zhenning Guo, Peipei Ge, Yiqi Fang, Yan Dou, Xiaoyang Yu, Jiguo Wang, Q. Gong, Yunquan Liu\",\"doi\":\"10.34133/2022/9802917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time delay of photoelectron emission serves as a fundamental building block to understand the ultrafast electron emission dynamics in strong-field physics. Here, we study the photoelectron angular streaking of CO molecules by using two-color (400+800 nm) corotating circularly polarized fields. By coincidently measuring photoelectrons with the dissociative ions, we present molecular frame photoelectron angular distributions with respect to the instantaneous driving electric field signatures. We develop a semiclassical nonadiabatic molecular quantum-trajectory Monte Carlo (MO-QTMC) model that fully captures the experimental observations and further ab initio simulations. We disentangle the orientation-resolved contribution of the anisotropic ionic potential and the molecular orbital structure on the measured photoelectron angular distributions. Furthermore, by analyzing the photoelectron interference patterns, we extract the sub-Coulomb-barrier phase distribution of the photoelectron wavepacket and reconstruct the orientation- and energy-resolved Wigner time delay in the molecular frame. Holographic angular streaking with bicircular fields can be used for probing polyatomic molecules in the future.\",\"PeriodicalId\":268204,\"journal\":{\"name\":\"Ultrafast Science\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrafast Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9802917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrafast Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9802917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probing Molecular Frame Wigner Time Delay and Electron Wavepacket Phase Structure of CO Molecule
The time delay of photoelectron emission serves as a fundamental building block to understand the ultrafast electron emission dynamics in strong-field physics. Here, we study the photoelectron angular streaking of CO molecules by using two-color (400+800 nm) corotating circularly polarized fields. By coincidently measuring photoelectrons with the dissociative ions, we present molecular frame photoelectron angular distributions with respect to the instantaneous driving electric field signatures. We develop a semiclassical nonadiabatic molecular quantum-trajectory Monte Carlo (MO-QTMC) model that fully captures the experimental observations and further ab initio simulations. We disentangle the orientation-resolved contribution of the anisotropic ionic potential and the molecular orbital structure on the measured photoelectron angular distributions. Furthermore, by analyzing the photoelectron interference patterns, we extract the sub-Coulomb-barrier phase distribution of the photoelectron wavepacket and reconstruct the orientation- and energy-resolved Wigner time delay in the molecular frame. Holographic angular streaking with bicircular fields can be used for probing polyatomic molecules in the future.