基于相似度度量的PSO搜索策略

C. Ramya, K. S. Shreedhara
{"title":"基于相似度度量的PSO搜索策略","authors":"C. Ramya, K. S. Shreedhara","doi":"10.32692/ijdi-eret/7.2.2018.1805","DOIUrl":null,"url":null,"abstract":"In the world of the Internet and World Wide Web, which offers a tremendous amount of information, an increasing emphasis is being given to searching services and functionality. Currently, a majority of web portals offer their searching utilities, be it better or worse. These can search for the content within the sites, mainly text the textual content of documents. In this paper a novel similarity measure called SMDR (Similarity Measure for Documents Retrieval) is proposed to help retrieve more similar documents from the repository thus contributing considerably to the effectiveness of Web Information Retrieval (WIR) process. Bio-inspired PSO methodology is used with the intent to reduce the response time of the system and optimizes WIR process, hence contributes to the efficiency of the system. This paper also demonstrates a comparative study of the proposed system with the existing method in terms of accuracy, sensitivity, F-measure and specificity. Finally, extensive experiments are conducted on CACM collections. Better precision-recall rates are achieved than the existing system. Experimental results demonstrate the effectiveness and efficiency of the proposed system.","PeriodicalId":306244,"journal":{"name":"International Journal of Darshan Institute on Engineering Research & Emerging Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PSO Strategy of Finding Relevant Web Documents using a New Similarity Measure\",\"authors\":\"C. Ramya, K. S. Shreedhara\",\"doi\":\"10.32692/ijdi-eret/7.2.2018.1805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the world of the Internet and World Wide Web, which offers a tremendous amount of information, an increasing emphasis is being given to searching services and functionality. Currently, a majority of web portals offer their searching utilities, be it better or worse. These can search for the content within the sites, mainly text the textual content of documents. In this paper a novel similarity measure called SMDR (Similarity Measure for Documents Retrieval) is proposed to help retrieve more similar documents from the repository thus contributing considerably to the effectiveness of Web Information Retrieval (WIR) process. Bio-inspired PSO methodology is used with the intent to reduce the response time of the system and optimizes WIR process, hence contributes to the efficiency of the system. This paper also demonstrates a comparative study of the proposed system with the existing method in terms of accuracy, sensitivity, F-measure and specificity. Finally, extensive experiments are conducted on CACM collections. Better precision-recall rates are achieved than the existing system. Experimental results demonstrate the effectiveness and efficiency of the proposed system.\",\"PeriodicalId\":306244,\"journal\":{\"name\":\"International Journal of Darshan Institute on Engineering Research & Emerging Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Darshan Institute on Engineering Research & Emerging Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32692/ijdi-eret/7.2.2018.1805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Darshan Institute on Engineering Research & Emerging Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32692/ijdi-eret/7.2.2018.1805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PSO Strategy of Finding Relevant Web Documents using a New Similarity Measure
In the world of the Internet and World Wide Web, which offers a tremendous amount of information, an increasing emphasis is being given to searching services and functionality. Currently, a majority of web portals offer their searching utilities, be it better or worse. These can search for the content within the sites, mainly text the textual content of documents. In this paper a novel similarity measure called SMDR (Similarity Measure for Documents Retrieval) is proposed to help retrieve more similar documents from the repository thus contributing considerably to the effectiveness of Web Information Retrieval (WIR) process. Bio-inspired PSO methodology is used with the intent to reduce the response time of the system and optimizes WIR process, hence contributes to the efficiency of the system. This paper also demonstrates a comparative study of the proposed system with the existing method in terms of accuracy, sensitivity, F-measure and specificity. Finally, extensive experiments are conducted on CACM collections. Better precision-recall rates are achieved than the existing system. Experimental results demonstrate the effectiveness and efficiency of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信