使用递归多状态多传感器估计器的联合音视频目标定位

Norbert Strobel, S. Spors, R. Rabenstein
{"title":"使用递归多状态多传感器估计器的联合音视频目标定位","authors":"Norbert Strobel, S. Spors, R. Rabenstein","doi":"10.1109/ICASSP.2000.859324","DOIUrl":null,"url":null,"abstract":"Object localization based on audio and video information is important for the analysis of dynamic scenes, such as video conferences or traffic situations. In this paper, we view the the dynamic audio-video object localization problem as a joint recursive estimation problem. It is solved using a decentralized Kalman filter fusing both audio and video position estimates. To better take into account different object maneuvers, multiple state-space equations are also incorporated. The result is a recursive multi-state multi-sensor estimator. Experiments show that it yields significantly improved joint position estimates compared to results achieved by using either an audio or a video system only.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Joint audio-video object localization using a recursive multi-state multi-sensor estimator\",\"authors\":\"Norbert Strobel, S. Spors, R. Rabenstein\",\"doi\":\"10.1109/ICASSP.2000.859324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object localization based on audio and video information is important for the analysis of dynamic scenes, such as video conferences or traffic situations. In this paper, we view the the dynamic audio-video object localization problem as a joint recursive estimation problem. It is solved using a decentralized Kalman filter fusing both audio and video position estimates. To better take into account different object maneuvers, multiple state-space equations are also incorporated. The result is a recursive multi-state multi-sensor estimator. Experiments show that it yields significantly improved joint position estimates compared to results achieved by using either an audio or a video system only.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.859324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.859324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于音频和视频信息的目标定位对于动态场景(如视频会议或交通状况)的分析非常重要。本文将动态音视频目标定位问题看作是一个联合递归估计问题。采用分散卡尔曼滤波器融合音频和视频的位置估计。为了更好地考虑不同的目标机动,还引入了多个状态空间方程。结果得到一个递归的多状态多传感器估计器。实验表明,与仅使用音频或视频系统的结果相比,它产生了显着改善的关节位置估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint audio-video object localization using a recursive multi-state multi-sensor estimator
Object localization based on audio and video information is important for the analysis of dynamic scenes, such as video conferences or traffic situations. In this paper, we view the the dynamic audio-video object localization problem as a joint recursive estimation problem. It is solved using a decentralized Kalman filter fusing both audio and video position estimates. To better take into account different object maneuvers, multiple state-space equations are also incorporated. The result is a recursive multi-state multi-sensor estimator. Experiments show that it yields significantly improved joint position estimates compared to results achieved by using either an audio or a video system only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信