宏观放置强化学习的评估

Chung-Kuan Cheng, A. Kahng, Sayak Kundu, Yucheng Wang, Zhiang Wang
{"title":"宏观放置强化学习的评估","authors":"Chung-Kuan Cheng, A. Kahng, Sayak Kundu, Yucheng Wang, Zhiang Wang","doi":"10.1145/3569052.3578926","DOIUrl":null,"url":null,"abstract":"We provide open, transparent implementation and assessment of Google Brain's deep reinforcement learning approach to macro placement (Nature) and its Circuit Training (CT) implementation in GitHub. We implement in open-source key \"blackbox\" elements of CT, and clarify discrepancies between CT and Nature. New testcases on open enablements are developed and released. We assess CT alongside multiple alternative macro placers, with all evaluation flows and related scripts public in GitHub. Our experiments also encompass academic mixed-size placement benchmarks, as well as ablation and stability studies. We comment on the impact of Nature and CT, as well as directions for future research.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Assessment of Reinforcement Learning for Macro Placement\",\"authors\":\"Chung-Kuan Cheng, A. Kahng, Sayak Kundu, Yucheng Wang, Zhiang Wang\",\"doi\":\"10.1145/3569052.3578926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide open, transparent implementation and assessment of Google Brain's deep reinforcement learning approach to macro placement (Nature) and its Circuit Training (CT) implementation in GitHub. We implement in open-source key \\\"blackbox\\\" elements of CT, and clarify discrepancies between CT and Nature. New testcases on open enablements are developed and released. We assess CT alongside multiple alternative macro placers, with all evaluation flows and related scripts public in GitHub. Our experiments also encompass academic mixed-size placement benchmarks, as well as ablation and stability studies. We comment on the impact of Nature and CT, as well as directions for future research.\",\"PeriodicalId\":169581,\"journal\":{\"name\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569052.3578926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提供开放、透明的实施和评估Google Brain的深度强化学习方法,用于宏观放置(Nature)及其在GitHub中的电路训练(CT)实现。我们在开源中实现了CT的关键“黑箱”元素,并澄清了CT与Nature之间的差异。开发并发布了关于开放启用的新测试用例。我们将CT与多个可选的宏放置器一起评估,所有评估流程和相关脚本都在GitHub中公开。我们的实验还包括学术上的混合尺寸放置基准,以及消融和稳定性研究。我们评论了Nature和CT的影响,以及未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Reinforcement Learning for Macro Placement
We provide open, transparent implementation and assessment of Google Brain's deep reinforcement learning approach to macro placement (Nature) and its Circuit Training (CT) implementation in GitHub. We implement in open-source key "blackbox" elements of CT, and clarify discrepancies between CT and Nature. New testcases on open enablements are developed and released. We assess CT alongside multiple alternative macro placers, with all evaluation flows and related scripts public in GitHub. Our experiments also encompass academic mixed-size placement benchmarks, as well as ablation and stability studies. We comment on the impact of Nature and CT, as well as directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信