复值多层感知器如何预测确定性混沌的行为

Seiya Satoh, R. Nakano
{"title":"复值多层感知器如何预测确定性混沌的行为","authors":"Seiya Satoh, R. Nakano","doi":"10.1109/IJCNN.2016.7727736","DOIUrl":null,"url":null,"abstract":"A complex-valued multilayer perceptron has the capability to represent complicated periodicity. We employ a very powerful learning method called C-SSF for learning a complex-valued multilayer perceptron. C-SSF finds a series of excellent solutions through successive learning. In deterministic chaos, long-term prediction is considered impossible. We apply C-SSF to two kinds of deterministic chaos and evaluate the learning and prediction performance of C-SSF.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How complex-valued multilayer perceptron can predict the behavior of deterministic chaos\",\"authors\":\"Seiya Satoh, R. Nakano\",\"doi\":\"10.1109/IJCNN.2016.7727736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complex-valued multilayer perceptron has the capability to represent complicated periodicity. We employ a very powerful learning method called C-SSF for learning a complex-valued multilayer perceptron. C-SSF finds a series of excellent solutions through successive learning. In deterministic chaos, long-term prediction is considered impossible. We apply C-SSF to two kinds of deterministic chaos and evaluate the learning and prediction performance of C-SSF.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复值多层感知器具有表征复杂周期的能力。我们使用了一种非常强大的学习方法,称为C-SSF来学习复杂值多层感知器。C-SSF通过连续学习找到了一系列优秀的解决方案。在确定性混沌中,长期预测被认为是不可能的。我们将C-SSF应用于两种确定性混沌,并评估了C-SSF的学习和预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How complex-valued multilayer perceptron can predict the behavior of deterministic chaos
A complex-valued multilayer perceptron has the capability to represent complicated periodicity. We employ a very powerful learning method called C-SSF for learning a complex-valued multilayer perceptron. C-SSF finds a series of excellent solutions through successive learning. In deterministic chaos, long-term prediction is considered impossible. We apply C-SSF to two kinds of deterministic chaos and evaluate the learning and prediction performance of C-SSF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信