卷积神经网络在低分辨率交通视频中的车辆检测

Carlo Migel Bautista, Clifford Austin Dy, Miguel Inigo Manalac, Raphael Angelo Orbe, M. Cordel
{"title":"卷积神经网络在低分辨率交通视频中的车辆检测","authors":"Carlo Migel Bautista, Clifford Austin Dy, Miguel Inigo Manalac, Raphael Angelo Orbe, M. Cordel","doi":"10.1109/TENCONSPRING.2016.7519418","DOIUrl":null,"url":null,"abstract":"Recent works on Convolutional Neural Network (CNN) in object detection and identification show its superior performance over other systems. It is being used on several machine vision tasks such as in face detection, OCR and traffic monitoring. These systems, however, use high resolution images which contain significant pattern information as compared to the typical cameras, such as for traffic monitoring, which are low resolution, thus, suffer low SNR. This work investigates the performance of CNN in detection and classification of vehicles using low quality traffic cameras. Results show an average accuracy equal to 94.72% is achieved by the system. An average of 51.28 ms execution time for a 2GHz CPU and 22.59 ms execution time for NVIDIA Fermi GPU are achieved making the system applicable to be implemented in real-time using 4-input traffic video with 6 fps.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Convolutional neural network for vehicle detection in low resolution traffic videos\",\"authors\":\"Carlo Migel Bautista, Clifford Austin Dy, Miguel Inigo Manalac, Raphael Angelo Orbe, M. Cordel\",\"doi\":\"10.1109/TENCONSPRING.2016.7519418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent works on Convolutional Neural Network (CNN) in object detection and identification show its superior performance over other systems. It is being used on several machine vision tasks such as in face detection, OCR and traffic monitoring. These systems, however, use high resolution images which contain significant pattern information as compared to the typical cameras, such as for traffic monitoring, which are low resolution, thus, suffer low SNR. This work investigates the performance of CNN in detection and classification of vehicles using low quality traffic cameras. Results show an average accuracy equal to 94.72% is achieved by the system. An average of 51.28 ms execution time for a 2GHz CPU and 22.59 ms execution time for NVIDIA Fermi GPU are achieved making the system applicable to be implemented in real-time using 4-input traffic video with 6 fps.\",\"PeriodicalId\":166275,\"journal\":{\"name\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2016.7519418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

近年来,卷积神经网络(CNN)在目标检测和识别方面的研究表明,其性能优于其他系统。它被用于几个机器视觉任务,如人脸检测、OCR和交通监控。然而,与典型的摄像头相比,这些系统使用的是包含重要模式信息的高分辨率图像,例如用于交通监控的低分辨率图像,因此信噪比较低。这项工作研究了CNN在使用低质量交通摄像头检测和分类车辆方面的性能。结果表明,该系统的平均准确率为94.72%。2GHz CPU的平均执行时间为51.28 ms, NVIDIA Fermi GPU的平均执行时间为22.59 ms,使系统适用于使用4输入6 fps的实时交通视频实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional neural network for vehicle detection in low resolution traffic videos
Recent works on Convolutional Neural Network (CNN) in object detection and identification show its superior performance over other systems. It is being used on several machine vision tasks such as in face detection, OCR and traffic monitoring. These systems, however, use high resolution images which contain significant pattern information as compared to the typical cameras, such as for traffic monitoring, which are low resolution, thus, suffer low SNR. This work investigates the performance of CNN in detection and classification of vehicles using low quality traffic cameras. Results show an average accuracy equal to 94.72% is achieved by the system. An average of 51.28 ms execution time for a 2GHz CPU and 22.59 ms execution time for NVIDIA Fermi GPU are achieved making the system applicable to be implemented in real-time using 4-input traffic video with 6 fps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信