图的归一化关联能的研究

Altındağ Bozkurt
{"title":"图的归一化关联能的研究","authors":"Altındağ Bozkurt","doi":"10.5937/spsunp2102071b","DOIUrl":null,"url":null,"abstract":"For a graph G of order n with normalized signless Laplacian eigenvalues g + 1 ≥ g + 2 ≥ ··· ≥ g + n ≥ 0, the Randić (normalized) incidence energy is defined as ' IRE(G) = ∑ n i=1 q g + i . In this paper, we present a survey on the results of IRE (G), especially with emphasis on the properties, bounds and Coulson integral formula of IRE (G).","PeriodicalId":394770,"journal":{"name":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on Randić (normalized) incidence energy of graphs\",\"authors\":\"Altındağ Bozkurt\",\"doi\":\"10.5937/spsunp2102071b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph G of order n with normalized signless Laplacian eigenvalues g + 1 ≥ g + 2 ≥ ··· ≥ g + n ≥ 0, the Randić (normalized) incidence energy is defined as ' IRE(G) = ∑ n i=1 q g + i . In this paper, we present a survey on the results of IRE (G), especially with emphasis on the properties, bounds and Coulson integral formula of IRE (G).\",\"PeriodicalId\":394770,\"journal\":{\"name\":\"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/spsunp2102071b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/spsunp2102071b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于归一化无符号拉普拉斯特征值G + 1≥G + 2≥···≥G + n≥0的n阶图G,定义其归一化入射能为IRE(G) =∑n i=1 q G + i。本文综述了IRE (G)的结果,重点讨论了IRE (G)的性质、界和Coulson积分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey on Randić (normalized) incidence energy of graphs
For a graph G of order n with normalized signless Laplacian eigenvalues g + 1 ≥ g + 2 ≥ ··· ≥ g + n ≥ 0, the Randić (normalized) incidence energy is defined as ' IRE(G) = ∑ n i=1 q g + i . In this paper, we present a survey on the results of IRE (G), especially with emphasis on the properties, bounds and Coulson integral formula of IRE (G).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信