共振电磁陷阱的离散WKB方法

E.V. Vybornyi
{"title":"共振电磁陷阱的离散WKB方法","authors":"E.V. Vybornyi","doi":"10.1109/DD46733.2019.9016596","DOIUrl":null,"url":null,"abstract":"We consider a model quantum Hamiltonian of a charge in a resonance electromagnetic trap. Using the operator averaging method, we obtain an effective quantum operator that asymptotically describes the anharmonic part of the Hamiltonian. We show that the operator becomes a second-order difference operator in a specially chosen quantum action-angle representation. Using the discrete WKB method for this difference equation, we obtain the semiclassical WKB asymptotics of the spectrum and stationary states of the charge.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On discrete WKB methods for resonance electromagnetic traps\",\"authors\":\"E.V. Vybornyi\",\"doi\":\"10.1109/DD46733.2019.9016596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a model quantum Hamiltonian of a charge in a resonance electromagnetic trap. Using the operator averaging method, we obtain an effective quantum operator that asymptotically describes the anharmonic part of the Hamiltonian. We show that the operator becomes a second-order difference operator in a specially chosen quantum action-angle representation. Using the discrete WKB method for this difference equation, we obtain the semiclassical WKB asymptotics of the spectrum and stationary states of the charge.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑谐振电磁阱中电荷的模型量子哈密顿量。利用算子平均法,我们得到了一个有效的量子算子,它渐近地描述了哈密顿算子的非调和部分。我们证明了在一个特殊选择的量子作用角表示中,算子变成了一个二阶差分算子。利用离散WKB方法对该差分方程得到了电荷谱和稳态的半经典WKB渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On discrete WKB methods for resonance electromagnetic traps
We consider a model quantum Hamiltonian of a charge in a resonance electromagnetic trap. Using the operator averaging method, we obtain an effective quantum operator that asymptotically describes the anharmonic part of the Hamiltonian. We show that the operator becomes a second-order difference operator in a specially chosen quantum action-angle representation. Using the discrete WKB method for this difference equation, we obtain the semiclassical WKB asymptotics of the spectrum and stationary states of the charge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信