动态效率和生产力

R. Färe, S. Grosskopf, D. Margaritis, William L. Weber
{"title":"动态效率和生产力","authors":"R. Färe, S. Grosskopf, D. Margaritis, William L. Weber","doi":"10.1093/OXFORDHB/9780190226718.013.5","DOIUrl":null,"url":null,"abstract":"The focus of this chapter is to move the measurement of efficiency and productivity from a static to a dynamic approach using distance functions. Since distance functions represent technology, the authors first specify that technology in a dynamic framework is amenable to data envelopment analysis (DEA)–type estimation, explicitly allowing current (or past) decisions to affect future production possibilities. This includes notions of intermediate products, investment, time substitution, supply chain, networks and possible reallocations across time. The chapter shows how to estimate dynamic distance functions and specify a multi-period dynamic model in the spirit of Ramsey (1928), as well as an adjacent-period model familiar from the Malmquist productivity literature, providing an empirical illustration of the former. Extensions of these dynamic models is relatively straightforward for other distance function–based productivity indices, both parametric and nonparametric, as well as for production in the presence of good and bad outputs.","PeriodicalId":287755,"journal":{"name":"The Oxford Handbook of Productivity Analysis","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Efficiency and Productivity\",\"authors\":\"R. Färe, S. Grosskopf, D. Margaritis, William L. Weber\",\"doi\":\"10.1093/OXFORDHB/9780190226718.013.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this chapter is to move the measurement of efficiency and productivity from a static to a dynamic approach using distance functions. Since distance functions represent technology, the authors first specify that technology in a dynamic framework is amenable to data envelopment analysis (DEA)–type estimation, explicitly allowing current (or past) decisions to affect future production possibilities. This includes notions of intermediate products, investment, time substitution, supply chain, networks and possible reallocations across time. The chapter shows how to estimate dynamic distance functions and specify a multi-period dynamic model in the spirit of Ramsey (1928), as well as an adjacent-period model familiar from the Malmquist productivity literature, providing an empirical illustration of the former. Extensions of these dynamic models is relatively straightforward for other distance function–based productivity indices, both parametric and nonparametric, as well as for production in the presence of good and bad outputs.\",\"PeriodicalId\":287755,\"journal\":{\"name\":\"The Oxford Handbook of Productivity Analysis\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Oxford Handbook of Productivity Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OXFORDHB/9780190226718.013.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Oxford Handbook of Productivity Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFORDHB/9780190226718.013.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本章的重点是使用距离函数将效率和生产率的测量从静态方法转移到动态方法。由于距离函数代表技术,作者首先指出,动态框架中的技术适用于数据包络分析(DEA)类型的估计,明确允许当前(或过去)的决策影响未来的生产可能性。这包括中间产品、投资、时间替代、供应链、网络和可能的跨时间再分配的概念。本章展示了如何估计动态距离函数,并以Ramsey(1928)的精神指定多时期动态模型,以及Malmquist生产力文献中熟悉的邻接时期模型,提供了前者的实证说明。这些动态模型的扩展对于其他基于距离函数的生产率指数(参数和非参数)以及存在好输出和坏输出的生产来说相对简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Efficiency and Productivity
The focus of this chapter is to move the measurement of efficiency and productivity from a static to a dynamic approach using distance functions. Since distance functions represent technology, the authors first specify that technology in a dynamic framework is amenable to data envelopment analysis (DEA)–type estimation, explicitly allowing current (or past) decisions to affect future production possibilities. This includes notions of intermediate products, investment, time substitution, supply chain, networks and possible reallocations across time. The chapter shows how to estimate dynamic distance functions and specify a multi-period dynamic model in the spirit of Ramsey (1928), as well as an adjacent-period model familiar from the Malmquist productivity literature, providing an empirical illustration of the former. Extensions of these dynamic models is relatively straightforward for other distance function–based productivity indices, both parametric and nonparametric, as well as for production in the presence of good and bad outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信