Fornasini-Marchesini状态空间二维数字滤波器稳定性和鲁棒性的一些新结果

W. Lu
{"title":"Fornasini-Marchesini状态空间二维数字滤波器稳定性和鲁棒性的一些新结果","authors":"W. Lu","doi":"10.1109/SECON.1994.324257","DOIUrl":null,"url":null,"abstract":"The paper describes a Lyapunov approach to stability and stability robustness analysis for 2D digital filters in the Fornasini-Marchesini local state-space setting (E. Fornasini and G. Marchesini, 1980). A class of new constant 2D Lyapunov equations, that generalize the 2D Lyapunov equation proposed recently by T. Hinamoto (1993), is described. It is shown that the generalized 2D Lyapunov equation can be used to derive a new stability condition that narrows the gap between the \"necessity\" and \"sufficiency\" that occurs in Hinamoto's stability theorem. The generalized 2D Lyapunov equations are then utilized to derive two lower bounds of unstructured, stable perturbations of a given stable filter. Numerical techniques for solving the proposed 2D Lyapunov equations are also presented.<<ETX>>","PeriodicalId":119615,"journal":{"name":"Proceedings of SOUTHEASTCON '94","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Some new results on stability and stability robustness of Fornasini-Marchesini state-space 2-D digital filters\",\"authors\":\"W. Lu\",\"doi\":\"10.1109/SECON.1994.324257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a Lyapunov approach to stability and stability robustness analysis for 2D digital filters in the Fornasini-Marchesini local state-space setting (E. Fornasini and G. Marchesini, 1980). A class of new constant 2D Lyapunov equations, that generalize the 2D Lyapunov equation proposed recently by T. Hinamoto (1993), is described. It is shown that the generalized 2D Lyapunov equation can be used to derive a new stability condition that narrows the gap between the \\\"necessity\\\" and \\\"sufficiency\\\" that occurs in Hinamoto's stability theorem. The generalized 2D Lyapunov equations are then utilized to derive two lower bounds of unstructured, stable perturbations of a given stable filter. Numerical techniques for solving the proposed 2D Lyapunov equations are also presented.<<ETX>>\",\"PeriodicalId\":119615,\"journal\":{\"name\":\"Proceedings of SOUTHEASTCON '94\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SOUTHEASTCON '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1994.324257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1994.324257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文描述了在Fornasini-Marchesini局部状态空间设置下二维数字滤波器的稳定性和稳定性鲁棒性分析的Lyapunov方法(E. Fornasini and G. Marchesini, 1980)。本文描述了由T. Hinamoto(1993)最近提出的二维Lyapunov方程的一类新的常数二维Lyapunov方程。利用广义二维Lyapunov方程推导出一个新的稳定性条件,该条件缩小了Hinamoto稳定性定理中出现的“必要”与“充分”的差距。然后利用广义二维李雅普诺夫方程推导出给定稳定滤波器的非结构稳定扰动的两个下界。本文还提出了求解二维李雅普诺夫方程的数值方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some new results on stability and stability robustness of Fornasini-Marchesini state-space 2-D digital filters
The paper describes a Lyapunov approach to stability and stability robustness analysis for 2D digital filters in the Fornasini-Marchesini local state-space setting (E. Fornasini and G. Marchesini, 1980). A class of new constant 2D Lyapunov equations, that generalize the 2D Lyapunov equation proposed recently by T. Hinamoto (1993), is described. It is shown that the generalized 2D Lyapunov equation can be used to derive a new stability condition that narrows the gap between the "necessity" and "sufficiency" that occurs in Hinamoto's stability theorem. The generalized 2D Lyapunov equations are then utilized to derive two lower bounds of unstructured, stable perturbations of a given stable filter. Numerical techniques for solving the proposed 2D Lyapunov equations are also presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信