高效保形预测器的局部距离度量学习

M. Pekala, Ashley J. Llorens, I-J. Wang
{"title":"高效保形预测器的局部距离度量学习","authors":"M. Pekala, Ashley J. Llorens, I-J. Wang","doi":"10.1109/MLSP.2012.6349813","DOIUrl":null,"url":null,"abstract":"Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Local distance metric learning for efficient conformal predictors\",\"authors\":\"M. Pekala, Ashley J. Llorens, I-J. Wang\",\"doi\":\"10.1109/MLSP.2012.6349813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

适形预测是一种相对较新的分类方法,它为产生具有精确置信度的预测提供了理论框架。对于遇到的每个新对象,共形预测器输出一组类标签,其中包含真实标签的概率至少为1 -∈,其中∈是用户指定的错误率。有信心的预测能力可能非常有用,但在许多实际应用程序中,由单个类标签组成的明确预测是首选。因此,需要设计适形预测器以最大化单例预测率,称为预测器的效率。在本文中,我们推导了一类保形预测器效率最大化的新准则,展示了局部距离度量学习的概念如何为最大化该准则提供有用的界限,并展示了在现实世界数据集上的效率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local distance metric learning for efficient conformal predictors
Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信