基于学习的随机多无人机系统联合任务分配与系统设计框架

Inwook Kim, J. R. Morrison
{"title":"基于学习的随机多无人机系统联合任务分配与系统设计框架","authors":"Inwook Kim, J. R. Morrison","doi":"10.1109/ICUAS.2018.8453318","DOIUrl":null,"url":null,"abstract":"We consider a system of UAVs, depots, service stations and tasks in a stochastic environment. Our goal is to jointly determine the system resources (system design), task allocation and waypoint selection. To our knowledge, none have studied this joint decision problem in the stochastic context. We formulate the problem as a Markov decision process (MDP) and resort to deep reinforcement learning (DRL) to obtain state-based decisions. Numerical studies are conducted to assess the performance of the proposed approach. In small examples for which an optimal policy can be found, the DRL based approach is much faster than value iteration and obtained nearly optimal solutions. In large examples, the DRL based approach can find efficient designs and policies.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning Based Framework for Joint Task Allocation and System Design in Stochastic Multi-UAV Systems\",\"authors\":\"Inwook Kim, J. R. Morrison\",\"doi\":\"10.1109/ICUAS.2018.8453318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a system of UAVs, depots, service stations and tasks in a stochastic environment. Our goal is to jointly determine the system resources (system design), task allocation and waypoint selection. To our knowledge, none have studied this joint decision problem in the stochastic context. We formulate the problem as a Markov decision process (MDP) and resort to deep reinforcement learning (DRL) to obtain state-based decisions. Numerical studies are conducted to assess the performance of the proposed approach. In small examples for which an optimal policy can be found, the DRL based approach is much faster than value iteration and obtained nearly optimal solutions. In large examples, the DRL based approach can find efficient designs and policies.\",\"PeriodicalId\":246293,\"journal\":{\"name\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2018.8453318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑一个随机环境下由无人机、仓库、服务站和任务组成的系统。我们的目标是共同确定系统资源(系统设计)、任务分配和路点选择。据我们所知,还没有人研究过随机环境下的联合决策问题。我们将问题表述为马尔可夫决策过程(MDP),并采用深度强化学习(DRL)来获得基于状态的决策。数值研究进行了评估所提出的方法的性能。在可以找到最优策略的小示例中,基于DRL的方法比值迭代快得多,并且获得了接近最优的解。在大型示例中,基于DRL的方法可以找到有效的设计和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Based Framework for Joint Task Allocation and System Design in Stochastic Multi-UAV Systems
We consider a system of UAVs, depots, service stations and tasks in a stochastic environment. Our goal is to jointly determine the system resources (system design), task allocation and waypoint selection. To our knowledge, none have studied this joint decision problem in the stochastic context. We formulate the problem as a Markov decision process (MDP) and resort to deep reinforcement learning (DRL) to obtain state-based decisions. Numerical studies are conducted to assess the performance of the proposed approach. In small examples for which an optimal policy can be found, the DRL based approach is much faster than value iteration and obtained nearly optimal solutions. In large examples, the DRL based approach can find efficient designs and policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信