多项式演算对不同素数模的度之间的线性间隙

S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi
{"title":"多项式演算对不同素数模的度之间的线性间隙","authors":"S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi","doi":"10.1145/301250.301399","DOIUrl":null,"url":null,"abstract":"Two important algebraic proof systems are the Nullstellensatz system and the polynomial calculus (also called the Grobner system). The Nullstellensatz system is a propositional proof system based on Hilbert's Nullstellensatz, and the polynomial calculus (PC) is a proof system which allows derivations of polynomials, over some field. The complexity of a proof in these systems is measured in terms of the degree of the polynomials used in the proof. The mod p counting principle can be formulated as a set MOD/sub p//sup n/ of constant-degree polynomials expressing the negation of the counting principle. The Tseitin mod p principles, TS/sub n/(p), are translations of the MOD/sub p//sup n/ into the Fourier basis. The present paper gives linear lower bounds on the degree of polynomial calculus refutations of MOD/sub p//sup n/ over p fields of characteristic q /spl ne/ p and over rings Z/sub q/ with q,p relatively prime. These are the first linear lower bounds for the polynomial calculus. As it is well-known to be easy to give constant degree polynomial calculus (and even Nullstellensatz) refutations of the MOD/sub p//sup n/ polynomials over F/sub p/, our results imply that the MOD/sub p//sup n/ polynomials have a linear gap between proof complexity for the polynomial calculus over F/sub p/ and over F/sub q/. We also obtain a linear gap for the polynomial calculus over rings Z/sub p/ and Z/sub q/ where p, q do not have identical prime factors.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Linear gaps between degrees for the polynomial calculus modulo distinct primes\",\"authors\":\"S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi\",\"doi\":\"10.1145/301250.301399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two important algebraic proof systems are the Nullstellensatz system and the polynomial calculus (also called the Grobner system). The Nullstellensatz system is a propositional proof system based on Hilbert's Nullstellensatz, and the polynomial calculus (PC) is a proof system which allows derivations of polynomials, over some field. The complexity of a proof in these systems is measured in terms of the degree of the polynomials used in the proof. The mod p counting principle can be formulated as a set MOD/sub p//sup n/ of constant-degree polynomials expressing the negation of the counting principle. The Tseitin mod p principles, TS/sub n/(p), are translations of the MOD/sub p//sup n/ into the Fourier basis. The present paper gives linear lower bounds on the degree of polynomial calculus refutations of MOD/sub p//sup n/ over p fields of characteristic q /spl ne/ p and over rings Z/sub q/ with q,p relatively prime. These are the first linear lower bounds for the polynomial calculus. As it is well-known to be easy to give constant degree polynomial calculus (and even Nullstellensatz) refutations of the MOD/sub p//sup n/ polynomials over F/sub p/, our results imply that the MOD/sub p//sup n/ polynomials have a linear gap between proof complexity for the polynomial calculus over F/sub p/ and over F/sub q/. We also obtain a linear gap for the polynomial calculus over rings Z/sub p/ and Z/sub q/ where p, q do not have identical prime factors.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/301250.301399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301250.301399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

两个重要的代数证明系统是Nullstellensatz系统和多项式微积分(也称为Grobner系统)。Nullstellensatz系统是基于Hilbert的Nullstellensatz的命题证明系统,而多项式演算(PC)是一个允许多项式在某个域上推导的证明系统。在这些系统中,证明的复杂性是根据证明中使用的多项式的程度来衡量的。mod p计数原理可以表示为表示计数原理的否定的常次多项式的集合mod /sub p//sup n/。tseittin模p原理TS/下标n/(p)是将mod /下标p//下标n/转换为傅里叶基。本文给出了特征为q/ spl ne/ p的MOD/sub p//sup n/ // // p域和q,p为相对素数的环Z/sub q/的多项式演算驳斥的线性下界。这是多项式微积分的第一个线性下界。众所周知,对于F/ p/ p//sup n/多项式,给出常次多项式演算(甚至是Nullstellensatz)的反驳是很容易的,我们的结果表明,在F/ p/ p/和F/ q/上的多项式演算的证明复杂度之间,MOD/ p//sup n/多项式的证明复杂度存在线性差距。我们还得到了环Z/ p/和环Z/ q/上多项式微积分的线性间隙,其中p, q不具有相同的素数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear gaps between degrees for the polynomial calculus modulo distinct primes
Two important algebraic proof systems are the Nullstellensatz system and the polynomial calculus (also called the Grobner system). The Nullstellensatz system is a propositional proof system based on Hilbert's Nullstellensatz, and the polynomial calculus (PC) is a proof system which allows derivations of polynomials, over some field. The complexity of a proof in these systems is measured in terms of the degree of the polynomials used in the proof. The mod p counting principle can be formulated as a set MOD/sub p//sup n/ of constant-degree polynomials expressing the negation of the counting principle. The Tseitin mod p principles, TS/sub n/(p), are translations of the MOD/sub p//sup n/ into the Fourier basis. The present paper gives linear lower bounds on the degree of polynomial calculus refutations of MOD/sub p//sup n/ over p fields of characteristic q /spl ne/ p and over rings Z/sub q/ with q,p relatively prime. These are the first linear lower bounds for the polynomial calculus. As it is well-known to be easy to give constant degree polynomial calculus (and even Nullstellensatz) refutations of the MOD/sub p//sup n/ polynomials over F/sub p/, our results imply that the MOD/sub p//sup n/ polynomials have a linear gap between proof complexity for the polynomial calculus over F/sub p/ and over F/sub q/. We also obtain a linear gap for the polynomial calculus over rings Z/sub p/ and Z/sub q/ where p, q do not have identical prime factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信