使用近似乘法器的对偶次梯度方法

Víctor Valls, D. Leith
{"title":"使用近似乘法器的对偶次梯度方法","authors":"Víctor Valls, D. Leith","doi":"10.1109/ALLERTON.2015.7447119","DOIUrl":null,"url":null,"abstract":"We consider the subgradient method for the dual problem in convex optimisation with approximate multipliers, i.e., the subgradient used in the update of the dual variables is obtained using an approximation of the true Lagrange multipliers. This problem is interesting for optimisation problems where the exact Lagrange multipliers might not be readily accessible. For example, in distributed optimisation the exact Lagrange multipliers might not be available at the nodes due to communication delays or losses. We show that we can construct approximate primal solutions that can get arbitrarily close to the set of optima as step size α is reduced. Applications of the analysis include unsynchronised subgradient updates in the dual variable update and unsynchronised max-weight scheduling.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual subgradient methods using approximate multipliers\",\"authors\":\"Víctor Valls, D. Leith\",\"doi\":\"10.1109/ALLERTON.2015.7447119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the subgradient method for the dual problem in convex optimisation with approximate multipliers, i.e., the subgradient used in the update of the dual variables is obtained using an approximation of the true Lagrange multipliers. This problem is interesting for optimisation problems where the exact Lagrange multipliers might not be readily accessible. For example, in distributed optimisation the exact Lagrange multipliers might not be available at the nodes due to communication delays or losses. We show that we can construct approximate primal solutions that can get arbitrarily close to the set of optima as step size α is reduced. Applications of the analysis include unsynchronised subgradient updates in the dual variable update and unsynchronised max-weight scheduling.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑了带近似乘子的凸优化对偶问题的子梯度方法,即对偶变量更新所用的子梯度是利用真拉格朗日乘子的近似得到的。这个问题对于精确的拉格朗日乘子可能不容易获得的优化问题很有趣。例如,在分布式优化中,由于通信延迟或丢失,精确的拉格朗日乘数可能在节点上不可用。我们证明,当步长α减小时,我们可以构造任意接近最优集的近似原始解。该分析的应用包括双变量更新中的非同步次梯度更新和非同步最大权调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual subgradient methods using approximate multipliers
We consider the subgradient method for the dual problem in convex optimisation with approximate multipliers, i.e., the subgradient used in the update of the dual variables is obtained using an approximation of the true Lagrange multipliers. This problem is interesting for optimisation problems where the exact Lagrange multipliers might not be readily accessible. For example, in distributed optimisation the exact Lagrange multipliers might not be available at the nodes due to communication delays or losses. We show that we can construct approximate primal solutions that can get arbitrarily close to the set of optima as step size α is reduced. Applications of the analysis include unsynchronised subgradient updates in the dual variable update and unsynchronised max-weight scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信