关系抽取的多任务学习

Kai Zhou, Xiangfeng Luo, Hongya Wang, R. Xu
{"title":"关系抽取的多任务学习","authors":"Kai Zhou, Xiangfeng Luo, Hongya Wang, R. Xu","doi":"10.1109/ICTAI.2019.00210","DOIUrl":null,"url":null,"abstract":"Distantly supervised relation extraction leverages knowledge bases to label training data automatically. However, distant supervision may introduce incorrect labels, which harm the performance. Many efforts have been devoted to tackling this problem, but most of them treat relation extraction as a simple classification task. As a result, they ignore useful information that comes from related tasks, i.e., dependency parsing and entity type classification. In this paper, we first propose a novel Multi-Task learning framework for Relation Extraction (MTRE). We employ dependency parsing and entity type classification as auxiliary tasks and relation extraction as the target task. We learn these tasks simultaneously from training instances to take advantage of inductive transfer between auxiliary tasks and the target task. Then we construct a hierarchical neural network, which incorporates dependency and entity representations from auxiliary tasks into a more robust relation representation against the noisy labels. The experimental results demonstrate that our model improves the predictive performance substantially over single-task learning baselines.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-task Learning for Relation Extraction\",\"authors\":\"Kai Zhou, Xiangfeng Luo, Hongya Wang, R. Xu\",\"doi\":\"10.1109/ICTAI.2019.00210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distantly supervised relation extraction leverages knowledge bases to label training data automatically. However, distant supervision may introduce incorrect labels, which harm the performance. Many efforts have been devoted to tackling this problem, but most of them treat relation extraction as a simple classification task. As a result, they ignore useful information that comes from related tasks, i.e., dependency parsing and entity type classification. In this paper, we first propose a novel Multi-Task learning framework for Relation Extraction (MTRE). We employ dependency parsing and entity type classification as auxiliary tasks and relation extraction as the target task. We learn these tasks simultaneously from training instances to take advantage of inductive transfer between auxiliary tasks and the target task. Then we construct a hierarchical neural network, which incorporates dependency and entity representations from auxiliary tasks into a more robust relation representation against the noisy labels. The experimental results demonstrate that our model improves the predictive performance substantially over single-task learning baselines.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

远程监督关系提取利用知识库自动标记训练数据。然而,远程监督可能会引入不正确的标签,从而损害性能。许多研究都致力于解决这个问题,但大多数都将关系提取作为一个简单的分类任务。因此,它们忽略了来自相关任务的有用信息,即依赖项解析和实体类型分类。在本文中,我们首先提出了一种新的多任务学习框架,用于关系提取(MTRE)。我们将依赖解析和实体类型分类作为辅助任务,将关系提取作为目标任务。我们从训练实例中同时学习这些任务,以利用辅助任务和目标任务之间的归纳迁移。然后,我们构建了一个层次神经网络,该网络将辅助任务的依赖关系和实体表示结合到一个针对噪声标签的更鲁棒的关系表示中。实验结果表明,我们的模型在单任务学习基线的基础上显著提高了预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-task Learning for Relation Extraction
Distantly supervised relation extraction leverages knowledge bases to label training data automatically. However, distant supervision may introduce incorrect labels, which harm the performance. Many efforts have been devoted to tackling this problem, but most of them treat relation extraction as a simple classification task. As a result, they ignore useful information that comes from related tasks, i.e., dependency parsing and entity type classification. In this paper, we first propose a novel Multi-Task learning framework for Relation Extraction (MTRE). We employ dependency parsing and entity type classification as auxiliary tasks and relation extraction as the target task. We learn these tasks simultaneously from training instances to take advantage of inductive transfer between auxiliary tasks and the target task. Then we construct a hierarchical neural network, which incorporates dependency and entity representations from auxiliary tasks into a more robust relation representation against the noisy labels. The experimental results demonstrate that our model improves the predictive performance substantially over single-task learning baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信