改进了数据匹配惩罚的非参数稀疏恢复

Marco Signoretto, K. Pelckmans, L. D. Lathauwer, J. Suykens
{"title":"改进了数据匹配惩罚的非参数稀疏恢复","authors":"Marco Signoretto, K. Pelckmans, L. D. Lathauwer, J. Suykens","doi":"10.1109/CIP.2010.5604121","DOIUrl":null,"url":null,"abstract":"This contribution studies the problem of learning sparse, nonparametric models from observations drawn from an arbitrary, unknown distribution. This specific problem leads us to an algorithm extending techniques for Multiple Kernel Learning (MKL), functional ANOVA models and the Component Selection and Smoothing Operator (COSSO). The key element is to use a data-dependent regularization scheme adapting to the specific distribution underlying the data. We then present empirical evidence supporting the proposed learning algorithm.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved non-parametric sparse recovery with data matched penalties\",\"authors\":\"Marco Signoretto, K. Pelckmans, L. D. Lathauwer, J. Suykens\",\"doi\":\"10.1109/CIP.2010.5604121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution studies the problem of learning sparse, nonparametric models from observations drawn from an arbitrary, unknown distribution. This specific problem leads us to an algorithm extending techniques for Multiple Kernel Learning (MKL), functional ANOVA models and the Component Selection and Smoothing Operator (COSSO). The key element is to use a data-dependent regularization scheme adapting to the specific distribution underlying the data. We then present empirical evidence supporting the proposed learning algorithm.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这一贡献研究了从任意未知分布的观测中学习稀疏非参数模型的问题。这个特定的问题导致我们的算法扩展技术为多核学习(MKL),功能方差分析模型和组件选择和平滑算子(COSSO)。关键要素是使用与数据相关的正则化方案,以适应数据底层的特定分布。然后,我们提出了支持所提出的学习算法的经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved non-parametric sparse recovery with data matched penalties
This contribution studies the problem of learning sparse, nonparametric models from observations drawn from an arbitrary, unknown distribution. This specific problem leads us to an algorithm extending techniques for Multiple Kernel Learning (MKL), functional ANOVA models and the Component Selection and Smoothing Operator (COSSO). The key element is to use a data-dependent regularization scheme adapting to the specific distribution underlying the data. We then present empirical evidence supporting the proposed learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信