Marco Signoretto, K. Pelckmans, L. D. Lathauwer, J. Suykens
{"title":"改进了数据匹配惩罚的非参数稀疏恢复","authors":"Marco Signoretto, K. Pelckmans, L. D. Lathauwer, J. Suykens","doi":"10.1109/CIP.2010.5604121","DOIUrl":null,"url":null,"abstract":"This contribution studies the problem of learning sparse, nonparametric models from observations drawn from an arbitrary, unknown distribution. This specific problem leads us to an algorithm extending techniques for Multiple Kernel Learning (MKL), functional ANOVA models and the Component Selection and Smoothing Operator (COSSO). The key element is to use a data-dependent regularization scheme adapting to the specific distribution underlying the data. We then present empirical evidence supporting the proposed learning algorithm.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved non-parametric sparse recovery with data matched penalties\",\"authors\":\"Marco Signoretto, K. Pelckmans, L. D. Lathauwer, J. Suykens\",\"doi\":\"10.1109/CIP.2010.5604121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution studies the problem of learning sparse, nonparametric models from observations drawn from an arbitrary, unknown distribution. This specific problem leads us to an algorithm extending techniques for Multiple Kernel Learning (MKL), functional ANOVA models and the Component Selection and Smoothing Operator (COSSO). The key element is to use a data-dependent regularization scheme adapting to the specific distribution underlying the data. We then present empirical evidence supporting the proposed learning algorithm.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved non-parametric sparse recovery with data matched penalties
This contribution studies the problem of learning sparse, nonparametric models from observations drawn from an arbitrary, unknown distribution. This specific problem leads us to an algorithm extending techniques for Multiple Kernel Learning (MKL), functional ANOVA models and the Component Selection and Smoothing Operator (COSSO). The key element is to use a data-dependent regularization scheme adapting to the specific distribution underlying the data. We then present empirical evidence supporting the proposed learning algorithm.