通过训练有限状态机改进小鼠DNA PCR设计

S. Yadav, S. Corns
{"title":"通过训练有限状态机改进小鼠DNA PCR设计","authors":"S. Yadav, S. Corns","doi":"10.1109/CIBCB.2010.5510701","DOIUrl":null,"url":null,"abstract":"This project presents an updated method for classification of polymerase chain reaction primers in mice using finite state classifiers. This is done to compensate for many lab, organism and chemical specific factors that are costly. Using Finite State Classifiers can help decrease the number of primers that fail to amplify correctly. For training these classifiers, five different evolutionary algorithms that use an incremental fitness reward are used. Variations to the number of generations and the values in the fitness reward are examined, and the resulting designs are presented. By controlling the fitness reward correctly, there is a potential to develop classifiers with a high likelihood of accepting only good primers. The proposed tool can act as a post-production add-on to the standard primer picking algorithm for gene expression detection in mice to compensate for local factors that may induce errors.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improved PCR design for mouse DNA by training finite state machines\",\"authors\":\"S. Yadav, S. Corns\",\"doi\":\"10.1109/CIBCB.2010.5510701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project presents an updated method for classification of polymerase chain reaction primers in mice using finite state classifiers. This is done to compensate for many lab, organism and chemical specific factors that are costly. Using Finite State Classifiers can help decrease the number of primers that fail to amplify correctly. For training these classifiers, five different evolutionary algorithms that use an incremental fitness reward are used. Variations to the number of generations and the values in the fitness reward are examined, and the resulting designs are presented. By controlling the fitness reward correctly, there is a potential to develop classifiers with a high likelihood of accepting only good primers. The proposed tool can act as a post-production add-on to the standard primer picking algorithm for gene expression detection in mice to compensate for local factors that may induce errors.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本项目提出了一种更新的方法,用于分类聚合酶链反应引物在小鼠使用有限状态分类器。这样做是为了补偿许多实验室、有机体和化学特定因素的成本。使用有限状态分类器可以帮助减少无法正确放大的引物数量。为了训练这些分类器,使用了五种不同的使用增量适应度奖励的进化算法。研究了代数和适应度奖励值的变化,并给出了最终的设计。通过正确控制适应度奖励,就有可能开发出只接受好的引物的分类器。该工具可以作为标准引物选择算法的后期附加组件,用于小鼠基因表达检测,以补偿可能导致错误的局部因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved PCR design for mouse DNA by training finite state machines
This project presents an updated method for classification of polymerase chain reaction primers in mice using finite state classifiers. This is done to compensate for many lab, organism and chemical specific factors that are costly. Using Finite State Classifiers can help decrease the number of primers that fail to amplify correctly. For training these classifiers, five different evolutionary algorithms that use an incremental fitness reward are used. Variations to the number of generations and the values in the fitness reward are examined, and the resulting designs are presented. By controlling the fitness reward correctly, there is a potential to develop classifiers with a high likelihood of accepting only good primers. The proposed tool can act as a post-production add-on to the standard primer picking algorithm for gene expression detection in mice to compensate for local factors that may induce errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信