弗罗贝尼乌斯结构

C. Heunen, J. Vicary
{"title":"弗罗贝尼乌斯结构","authors":"C. Heunen, J. Vicary","doi":"10.1093/oso/9780198739623.003.0005","DOIUrl":null,"url":null,"abstract":"A Frobenius structure is a monoid together with a comonoid, which satisfies an interaction law. Frobenius structures have a powerful graphical calculus and we prove a normal form theorem that makes them easy to work with. The Frobenius law itself is justified as a coherence property between daggers and closure of a category. We prove classification theorems for dagger Frobenius structures: in Hilb in terms of operator algebras and in Rel in terms of groupoids. Of special interest is the commutative case—as for Hilbert spaces this corresponds to a choice of basis—and provides a powerful tool to model classical information. We discuss phase gates and the state transfer protocol—as well as modules for Frobenius structures—and show how we can use these to model measurement, controlled operations and quantum teleportation.","PeriodicalId":314153,"journal":{"name":"Categories for Quantum Theory","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius Structures\",\"authors\":\"C. Heunen, J. Vicary\",\"doi\":\"10.1093/oso/9780198739623.003.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Frobenius structure is a monoid together with a comonoid, which satisfies an interaction law. Frobenius structures have a powerful graphical calculus and we prove a normal form theorem that makes them easy to work with. The Frobenius law itself is justified as a coherence property between daggers and closure of a category. We prove classification theorems for dagger Frobenius structures: in Hilb in terms of operator algebras and in Rel in terms of groupoids. Of special interest is the commutative case—as for Hilbert spaces this corresponds to a choice of basis—and provides a powerful tool to model classical information. We discuss phase gates and the state transfer protocol—as well as modules for Frobenius structures—and show how we can use these to model measurement, controlled operations and quantum teleportation.\",\"PeriodicalId\":314153,\"journal\":{\"name\":\"Categories for Quantum Theory\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Categories for Quantum Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198739623.003.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories for Quantum Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198739623.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Frobenius结构是满足相互作用规律的一元和共一元结构。Frobenius结构有一个强大的图形演算,我们证明了一个标准形式定理,使它们易于使用。Frobenius定律本身被证明是匕首和范畴闭合之间的一致性。我们证明了匕首Frobenius结构的分类定理:在Hilb中用算子代数证明,在Rel中用群类群证明。特别有趣的是交换情况——对于希尔伯特空间,这对应于基的选择——并提供了一个强大的工具来建模经典信息。我们讨论了相门和状态转移协议,以及Frobenius结构的模块,并展示了我们如何使用这些来模拟测量、控制操作和量子隐形传态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius Structures
A Frobenius structure is a monoid together with a comonoid, which satisfies an interaction law. Frobenius structures have a powerful graphical calculus and we prove a normal form theorem that makes them easy to work with. The Frobenius law itself is justified as a coherence property between daggers and closure of a category. We prove classification theorems for dagger Frobenius structures: in Hilb in terms of operator algebras and in Rel in terms of groupoids. Of special interest is the commutative case—as for Hilbert spaces this corresponds to a choice of basis—and provides a powerful tool to model classical information. We discuss phase gates and the state transfer protocol—as well as modules for Frobenius structures—and show how we can use these to model measurement, controlled operations and quantum teleportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信