{"title":"随机递归神经网络的有效在线自适应","authors":"Daniel Tanneberg, Jan Peters, E. Rückert","doi":"10.1109/HUMANOIDS.2017.8246875","DOIUrl":null,"url":null,"abstract":"Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient online adaptation with stochastic recurrent neural networks\",\"authors\":\"Daniel Tanneberg, Jan Peters, E. Rückert\",\"doi\":\"10.1109/HUMANOIDS.2017.8246875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient online adaptation with stochastic recurrent neural networks
Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio-inspired stochastic recurrent neural network. By using the intrinsic motivation signal cognitive dissonance with a mental replay strategy, the robot can learn from few physical interactions and can therefore adapt to novel environments in seconds. We evaluate our online planning and adaptation framework on a KUKA LWR arm. The efficient online adaptation is shown by learning unknown workspace constraints sample-efficient within few seconds while following given via points.