关于偶数点的三角插值

Anthony P. Austin
{"title":"关于偶数点的三角插值","authors":"Anthony P. Austin","doi":"10.1553/etna_vol58s271","DOIUrl":null,"url":null,"abstract":". In contrast to odd-length trigonometric interpolants, even-length trigonometric interpolants need not be unique; this is apparent from the representation of the interpolant in the (real or complex) Fourier basis, which possesses an extra degree of freedom in the choice of the highest-order basis function in the even case. One can eliminate this degree of freedom by imposing a constraint, but then the interpolant may cease to exist for certain choices of the interpolation points. On the other hand, the Lagrange representation developed by Gauss always produces an interpolant despite having no free parameters. We discuss the choice Gauss’s formula makes for the extra degree of freedom and show that, when the points are equispaced, its choice is optimal in the sense that it minimizes both the standard and 2-norm Lebesgue constants for the interpolation problem. For non-equispaced points, we give numerical evidence that Gauss’s formula is no longer optimal and consider interpolants of minimal 2-norm instead. We show how to modify Gauss’s formula to produce a minimal-norm interpolant and that, if the points are equispaced, no modification is necessary.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On trigonometric interpolation in an even number of points\",\"authors\":\"Anthony P. Austin\",\"doi\":\"10.1553/etna_vol58s271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In contrast to odd-length trigonometric interpolants, even-length trigonometric interpolants need not be unique; this is apparent from the representation of the interpolant in the (real or complex) Fourier basis, which possesses an extra degree of freedom in the choice of the highest-order basis function in the even case. One can eliminate this degree of freedom by imposing a constraint, but then the interpolant may cease to exist for certain choices of the interpolation points. On the other hand, the Lagrange representation developed by Gauss always produces an interpolant despite having no free parameters. We discuss the choice Gauss’s formula makes for the extra degree of freedom and show that, when the points are equispaced, its choice is optimal in the sense that it minimizes both the standard and 2-norm Lebesgue constants for the interpolation problem. For non-equispaced points, we give numerical evidence that Gauss’s formula is no longer optimal and consider interpolants of minimal 2-norm instead. We show how to modify Gauss’s formula to produce a minimal-norm interpolant and that, if the points are equispaced, no modification is necessary.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 与奇长三角插值相反,偶长三角插值不需要是唯一的;这从(实或复)傅里叶基的插值表示中可以明显看出,在偶数情况下,它在选择最高阶基函数时具有额外的自由度。我们可以通过施加约束来消除这种自由度,但是对于某些插值点的选择,插值可能会停止存在。另一方面,由高斯发展的拉格朗日表示,尽管没有自由参数,但总是产生插值。我们讨论了高斯公式对额外自由度的选择,并表明,当点相等时,它的选择是最优的,因为它最小化了插值问题的标准和2范数勒贝格常数。对于非等距点,我们给出了数值证据,证明高斯公式不再是最优的,而是考虑最小2-范数插值。我们展示了如何修改高斯公式来产生最小范数插值,并且如果点是相等的,则不需要修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On trigonometric interpolation in an even number of points
. In contrast to odd-length trigonometric interpolants, even-length trigonometric interpolants need not be unique; this is apparent from the representation of the interpolant in the (real or complex) Fourier basis, which possesses an extra degree of freedom in the choice of the highest-order basis function in the even case. One can eliminate this degree of freedom by imposing a constraint, but then the interpolant may cease to exist for certain choices of the interpolation points. On the other hand, the Lagrange representation developed by Gauss always produces an interpolant despite having no free parameters. We discuss the choice Gauss’s formula makes for the extra degree of freedom and show that, when the points are equispaced, its choice is optimal in the sense that it minimizes both the standard and 2-norm Lebesgue constants for the interpolation problem. For non-equispaced points, we give numerical evidence that Gauss’s formula is no longer optimal and consider interpolants of minimal 2-norm instead. We show how to modify Gauss’s formula to produce a minimal-norm interpolant and that, if the points are equispaced, no modification is necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信