利用ART-2神经网络确定钢水充渣过程的排渣力矩

Y. Eremenko, D. Poleshchenko, A. Glushchenko, Y. Tsygankov, Yu. A. Kovriznich
{"title":"利用ART-2神经网络确定钢水充渣过程的排渣力矩","authors":"Y. Eremenko, D. Poleshchenko, A. Glushchenko, Y. Tsygankov, Yu. A. Kovriznich","doi":"10.1109/SCM.2017.7970646","DOIUrl":null,"url":null,"abstract":"Using adaptive resonance theory (ART-2) neural network, a method is proposed to process a signal of power spectral density of surface acceleration of a steel ladle protective pipe manipulator in order to determine the moment preceding the slag discharge from the steel ladle. We compare the spectrum amplitude analysis, the power spectrum analysis, and the power spectral density analysis of the vibration signal from the protective pipe manipulator surface to choose the best approach to create training set for an ART-2 network. It is proved by modeling that the neural network is able to determine the teeming process state preceding the slag discharge from the steel ladle under real production conditions. The results of the research prove the effectiveness of using an ART-2 neural network based classifier to solve the considered problem.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ART-2 neural network usage to determine moment of slag discharge during steel teeming process\",\"authors\":\"Y. Eremenko, D. Poleshchenko, A. Glushchenko, Y. Tsygankov, Yu. A. Kovriznich\",\"doi\":\"10.1109/SCM.2017.7970646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using adaptive resonance theory (ART-2) neural network, a method is proposed to process a signal of power spectral density of surface acceleration of a steel ladle protective pipe manipulator in order to determine the moment preceding the slag discharge from the steel ladle. We compare the spectrum amplitude analysis, the power spectrum analysis, and the power spectral density analysis of the vibration signal from the protective pipe manipulator surface to choose the best approach to create training set for an ART-2 network. It is proved by modeling that the neural network is able to determine the teeming process state preceding the slag discharge from the steel ladle under real production conditions. The results of the research prove the effectiveness of using an ART-2 neural network based classifier to solve the considered problem.\",\"PeriodicalId\":315574,\"journal\":{\"name\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2017.7970646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用自适应共振理论(ART-2)神经网络,对钢包保护管机械手表面加速度功率谱密度信号进行处理,确定钢包出渣前的时刻。通过对保护管机械手表面振动信号的频谱幅值分析、功率谱分析和功率谱密度分析进行比较,选择最佳的ART-2网络训练集创建方法。通过建模证明,在实际生产条件下,神经网络能够确定钢包排渣前的浇注过程状态。研究结果证明了使用基于ART-2神经网络的分类器来解决所考虑问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ART-2 neural network usage to determine moment of slag discharge during steel teeming process
Using adaptive resonance theory (ART-2) neural network, a method is proposed to process a signal of power spectral density of surface acceleration of a steel ladle protective pipe manipulator in order to determine the moment preceding the slag discharge from the steel ladle. We compare the spectrum amplitude analysis, the power spectrum analysis, and the power spectral density analysis of the vibration signal from the protective pipe manipulator surface to choose the best approach to create training set for an ART-2 network. It is proved by modeling that the neural network is able to determine the teeming process state preceding the slag discharge from the steel ladle under real production conditions. The results of the research prove the effectiveness of using an ART-2 neural network based classifier to solve the considered problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信