溶栓微型搅拌器的设计与分析

M. Morita, Zhongwei Jiang, Naoki Chijimatsu
{"title":"溶栓微型搅拌器的设计与分析","authors":"M. Morita, Zhongwei Jiang, Naoki Chijimatsu","doi":"10.1117/12.783881","DOIUrl":null,"url":null,"abstract":"Thrombus or blood clot may cause cerebral infarction and myocardial infarction if the clot can not be dissolved within several hours after it was formed. The objective of this study is to design a new structure of stirrer for thrombus dissolution. In this paper, to stir the solution with a high viscosity like blood, large amplitude was confirmed to be necessary for the stirrer by the fundamental experiment. For this purpose, shape of the stirrer and type of the actuator were changed, and force and displacement of the stirrer were analyzed. Sine waves with the resonance frequencies of the stirrer (50 V; 571 Hz) were used as the input signals. The performance of the stirrer was simulated by Finite Element Analysis (FEA) to obtain large displacement. Results showed that the amplitude at the tip of stirrer was 100 times larger than the output displacement of the PZT actuator stimulated with the resonance frequency. Concluding this paper, a new type of the micro-stirrer was designed and analyzed by FEA and it was found that the proposed stirrer had a large amplitude with a good input voltage efficiency.","PeriodicalId":250590,"journal":{"name":"ICMIT: Mechatronics and Information Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and analysis of micro-stirrer for thrombus dissolution\",\"authors\":\"M. Morita, Zhongwei Jiang, Naoki Chijimatsu\",\"doi\":\"10.1117/12.783881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thrombus or blood clot may cause cerebral infarction and myocardial infarction if the clot can not be dissolved within several hours after it was formed. The objective of this study is to design a new structure of stirrer for thrombus dissolution. In this paper, to stir the solution with a high viscosity like blood, large amplitude was confirmed to be necessary for the stirrer by the fundamental experiment. For this purpose, shape of the stirrer and type of the actuator were changed, and force and displacement of the stirrer were analyzed. Sine waves with the resonance frequencies of the stirrer (50 V; 571 Hz) were used as the input signals. The performance of the stirrer was simulated by Finite Element Analysis (FEA) to obtain large displacement. Results showed that the amplitude at the tip of stirrer was 100 times larger than the output displacement of the PZT actuator stimulated with the resonance frequency. Concluding this paper, a new type of the micro-stirrer was designed and analyzed by FEA and it was found that the proposed stirrer had a large amplitude with a good input voltage efficiency.\",\"PeriodicalId\":250590,\"journal\":{\"name\":\"ICMIT: Mechatronics and Information Technology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICMIT: Mechatronics and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.783881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMIT: Mechatronics and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.783881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

血栓或血块如果在形成后数小时内不能溶解,可引起脑梗死和心肌梗死。本研究的目的是设计一种用于溶栓的新型搅拌器。本文通过基础实验,确定了要搅拌像血液一样的高粘度溶液,需要大振幅的搅拌器。为此,改变了搅拌器的形状和执行器的类型,并对搅拌器的力和位移进行了分析。与搅拌器共振频率的正弦波(50 V;571 Hz)作为输入信号。通过有限元分析对搅拌器的性能进行了模拟,得到了大位移。结果表明,在共振频率的刺激下,搅拌器末端的振幅比压电陶瓷驱动器的输出位移大100倍。最后,设计了一种新型微型搅拌器,并对其进行了有限元分析,结果表明,该搅拌器具有振幅大、输入电压效率高的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and analysis of micro-stirrer for thrombus dissolution
Thrombus or blood clot may cause cerebral infarction and myocardial infarction if the clot can not be dissolved within several hours after it was formed. The objective of this study is to design a new structure of stirrer for thrombus dissolution. In this paper, to stir the solution with a high viscosity like blood, large amplitude was confirmed to be necessary for the stirrer by the fundamental experiment. For this purpose, shape of the stirrer and type of the actuator were changed, and force and displacement of the stirrer were analyzed. Sine waves with the resonance frequencies of the stirrer (50 V; 571 Hz) were used as the input signals. The performance of the stirrer was simulated by Finite Element Analysis (FEA) to obtain large displacement. Results showed that the amplitude at the tip of stirrer was 100 times larger than the output displacement of the PZT actuator stimulated with the resonance frequency. Concluding this paper, a new type of the micro-stirrer was designed and analyzed by FEA and it was found that the proposed stirrer had a large amplitude with a good input voltage efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信