利用扩展卷积和ShuffleNet进行遥感图像分割的深度学习优化

Rahul Gomes, Papia F. Rozario, Nishan Adhikari
{"title":"利用扩展卷积和ShuffleNet进行遥感图像分割的深度学习优化","authors":"Rahul Gomes, Papia F. Rozario, Nishan Adhikari","doi":"10.1109/EIT51626.2021.9491910","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of land use land cover data using deep learning networks have gained significant importance in the remote sensing domain. However, deep learning architectures are computation-intensive. In this research, we propose an Atrous Shuffle-UNet network, which is designed to be lightweight. The network comprises of modified ShuffleNet units which are arranged in a similar network structure as the UNet. Atrous convolution in the proposed network increases the receptive field of the network enabling faster convergence. We compare the proposed network to state of the art deep learning architectures such as UNet, UNet with ResNet modules and a UNet with standard ShuffleNet modules. The proposed changes in the ShuffleNet units enable the network to outperform these architectures and do so with significantly less parameters.","PeriodicalId":162816,"journal":{"name":"2021 IEEE International Conference on Electro Information Technology (EIT)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Deep Learning optimization in remote sensing image segmentation using dilated convolutions and ShuffleNet\",\"authors\":\"Rahul Gomes, Papia F. Rozario, Nishan Adhikari\",\"doi\":\"10.1109/EIT51626.2021.9491910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of land use land cover data using deep learning networks have gained significant importance in the remote sensing domain. However, deep learning architectures are computation-intensive. In this research, we propose an Atrous Shuffle-UNet network, which is designed to be lightweight. The network comprises of modified ShuffleNet units which are arranged in a similar network structure as the UNet. Atrous convolution in the proposed network increases the receptive field of the network enabling faster convergence. We compare the proposed network to state of the art deep learning architectures such as UNet, UNet with ResNet modules and a UNet with standard ShuffleNet modules. The proposed changes in the ShuffleNet units enable the network to outperform these architectures and do so with significantly less parameters.\",\"PeriodicalId\":162816,\"journal\":{\"name\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT51626.2021.9491910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electro Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT51626.2021.9491910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

利用深度学习网络对土地利用和土地覆盖数据进行语义分割在遥感领域具有重要意义。然而,深度学习架构是计算密集型的。在这项研究中,我们提出了一个轻量级的Atrous Shuffle-UNet网络。该网络由改进的ShuffleNet单元组成,这些单元以与UNet相似的网络结构排列。提出的网络中的亚历卷积增加了网络的接受域,使网络更快地收敛。我们将提出的网络与最先进的深度学习架构(如UNet,带ResNet模块的UNet和带标准ShuffleNet模块的UNet)进行比较。在ShuffleNet单元中提出的更改使网络能够以更少的参数优于这些体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning optimization in remote sensing image segmentation using dilated convolutions and ShuffleNet
Semantic segmentation of land use land cover data using deep learning networks have gained significant importance in the remote sensing domain. However, deep learning architectures are computation-intensive. In this research, we propose an Atrous Shuffle-UNet network, which is designed to be lightweight. The network comprises of modified ShuffleNet units which are arranged in a similar network structure as the UNet. Atrous convolution in the proposed network increases the receptive field of the network enabling faster convergence. We compare the proposed network to state of the art deep learning architectures such as UNet, UNet with ResNet modules and a UNet with standard ShuffleNet modules. The proposed changes in the ShuffleNet units enable the network to outperform these architectures and do so with significantly less parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信