模糊自适应系统ART框架下椭球ARTMAP分类器的设计

R. Peralta, G. Anagnostopoulos, E. Gómez-Sánchez, S. Richie
{"title":"模糊自适应系统ART框架下椭球ARTMAP分类器的设计","authors":"R. Peralta, G. Anagnostopoulos, E. Gómez-Sánchez, S. Richie","doi":"10.1109/IJCNN.2005.1555876","DOIUrl":null,"url":null,"abstract":"In this paper we present the design of fuzzy adaptive system ellipsoid ARTMAP (FASEAM), a novel neural architecture based on ellipsoid ARTMAP (EAM) that is equipped with concepts utilized in the fuzzy adaptive system ART (FASART) architecture. More specifically, we derive a new category choice function appropriate for EAM categories that is non-constant in a category's representation region. Additionally, we augment the EAM category description with a centroid vector, whose learning rate is inversely proportional to the number of training patterns accessing the category. Finally, we demonstrate the merits of our design choices by comparing FASART, EAM and FASEAM in terms of generalization performance and final structural complexity on a set of classification problems.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the design of an ellipsoid ARTMAP classifier within the fuzzy adaptive system ART framework\",\"authors\":\"R. Peralta, G. Anagnostopoulos, E. Gómez-Sánchez, S. Richie\",\"doi\":\"10.1109/IJCNN.2005.1555876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the design of fuzzy adaptive system ellipsoid ARTMAP (FASEAM), a novel neural architecture based on ellipsoid ARTMAP (EAM) that is equipped with concepts utilized in the fuzzy adaptive system ART (FASART) architecture. More specifically, we derive a new category choice function appropriate for EAM categories that is non-constant in a category's representation region. Additionally, we augment the EAM category description with a centroid vector, whose learning rate is inversely proportional to the number of training patterns accessing the category. Finally, we demonstrate the merits of our design choices by comparing FASART, EAM and FASEAM in terms of generalization performance and final structural complexity on a set of classification problems.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1555876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了模糊自适应系统椭球ARTMAP (FASEAM)的设计,这是一种基于椭球ARTMAP (EAM)的新型神经网络架构,它采用了模糊自适应系统ART (FASART)架构中使用的概念。更具体地说,我们推导了一个新的适用于EAM类别的类别选择函数,该函数在类别的表示区域中是非常数的。此外,我们用质心向量增强EAM类别描述,其学习率与访问类别的训练模式数量成反比。最后,我们通过比较FASART、EAM和FASEAM在一组分类问题上的泛化性能和最终结构复杂性来证明我们的设计选择的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the design of an ellipsoid ARTMAP classifier within the fuzzy adaptive system ART framework
In this paper we present the design of fuzzy adaptive system ellipsoid ARTMAP (FASEAM), a novel neural architecture based on ellipsoid ARTMAP (EAM) that is equipped with concepts utilized in the fuzzy adaptive system ART (FASART) architecture. More specifically, we derive a new category choice function appropriate for EAM categories that is non-constant in a category's representation region. Additionally, we augment the EAM category description with a centroid vector, whose learning rate is inversely proportional to the number of training patterns accessing the category. Finally, we demonstrate the merits of our design choices by comparing FASART, EAM and FASEAM in terms of generalization performance and final structural complexity on a set of classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信