求解时变凸优化问题的定时动力系统方法

Rejitha Raveendran, A. Mahindrakar, U. Vaidya
{"title":"求解时变凸优化问题的定时动力系统方法","authors":"Rejitha Raveendran, A. Mahindrakar, U. Vaidya","doi":"10.23919/ACC53348.2022.9867287","DOIUrl":null,"url":null,"abstract":"A time-varying (TV) optimization problem arises in many real-time applications, where the objective function or constraints change continuously with time. Consequently, the optimal points of the problem at each time instant form an optimal trajectory and hence tracking the optimal trajectory calls for the need to solve the TV optimization problem. A second-order continuous-time gradient-flow approach is proposed in this paper to track the optimal trajectory of TV convex optimization problems in fixed-time irrespective of the initial conditions. Later on we present a second-order nonsmooth dynamical system to solve the TV convex optimization problem in fixed time that does not require the exact information about the time rate of change of the cost function gradient. It makes the non-smooth dynamical system robust to the temporal variation in the gradient of the cost function. Two numerical examples are considered here for the simulation-based validation of the proposed approaches.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-Time Dynamical System Approach for Solving Time-Varying Convex Optimization Problems\",\"authors\":\"Rejitha Raveendran, A. Mahindrakar, U. Vaidya\",\"doi\":\"10.23919/ACC53348.2022.9867287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A time-varying (TV) optimization problem arises in many real-time applications, where the objective function or constraints change continuously with time. Consequently, the optimal points of the problem at each time instant form an optimal trajectory and hence tracking the optimal trajectory calls for the need to solve the TV optimization problem. A second-order continuous-time gradient-flow approach is proposed in this paper to track the optimal trajectory of TV convex optimization problems in fixed-time irrespective of the initial conditions. Later on we present a second-order nonsmooth dynamical system to solve the TV convex optimization problem in fixed time that does not require the exact information about the time rate of change of the cost function gradient. It makes the non-smooth dynamical system robust to the temporal variation in the gradient of the cost function. Two numerical examples are considered here for the simulation-based validation of the proposed approaches.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"515 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多实时应用中,目标函数或约束会随着时间的变化而不断变化,因此会出现时变优化问题。因此,问题在每个时刻的最优点形成最优轨迹,因此跟踪最优轨迹要求解决电视优化问题。本文提出了一种二阶连续时间梯度流方法,用于在不考虑初始条件的情况下,在固定时间内跟踪TV凸优化问题的最优轨迹。随后,我们提出了一个二阶非光滑动力系统来解决固定时间内的TV凸优化问题,该问题不需要成本函数梯度的时间变化率的确切信息。它使非光滑动力系统对代价函数梯度的时间变化具有鲁棒性。本文考虑了两个数值实例,对所提出的方法进行了基于仿真的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Time Dynamical System Approach for Solving Time-Varying Convex Optimization Problems
A time-varying (TV) optimization problem arises in many real-time applications, where the objective function or constraints change continuously with time. Consequently, the optimal points of the problem at each time instant form an optimal trajectory and hence tracking the optimal trajectory calls for the need to solve the TV optimization problem. A second-order continuous-time gradient-flow approach is proposed in this paper to track the optimal trajectory of TV convex optimization problems in fixed-time irrespective of the initial conditions. Later on we present a second-order nonsmooth dynamical system to solve the TV convex optimization problem in fixed time that does not require the exact information about the time rate of change of the cost function gradient. It makes the non-smooth dynamical system robust to the temporal variation in the gradient of the cost function. Two numerical examples are considered here for the simulation-based validation of the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信