话语级对话生成的状态意识对抗性训练

Y. Huang, Xiaoting Wu, Wei Hu, Junlan Feng, Chao Deng
{"title":"话语级对话生成的状态意识对抗性训练","authors":"Y. Huang, Xiaoting Wu, Wei Hu, Junlan Feng, Chao Deng","doi":"10.18653/v1/2022.seretod-1.8","DOIUrl":null,"url":null,"abstract":"Dialogue generation is a challenging problem because it not only requires us to model the context in a conversation but also to exploit it to generate a coherent and fluent utterance. This paper, aiming for a specific topic of this field, proposes an adversarial training based framework for utterance-level dialogue generation. Technically, we train an encoder-decoder generator simultaneously with a discriminative classifier that make the utterance approximate to the state-aware inputs. Experiments on MultiWoZ 2.0 and MultiWoZ 2.1 datasets show that our method achieves advanced improvements on both automatic and human evaluations, and on the effectiveness of our framework facing low-resource. We further explore the effect of fine-grained augmentations for downstream dialogue state tracking (DST) tasks. Experimental results demonstrate the high-quality data generated by our proposed framework improves the performance over state-of-the-art models.","PeriodicalId":171614,"journal":{"name":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","volume":"619 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-Aware Adversarial Training for Utterance-Level Dialogue Generation\",\"authors\":\"Y. Huang, Xiaoting Wu, Wei Hu, Junlan Feng, Chao Deng\",\"doi\":\"10.18653/v1/2022.seretod-1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dialogue generation is a challenging problem because it not only requires us to model the context in a conversation but also to exploit it to generate a coherent and fluent utterance. This paper, aiming for a specific topic of this field, proposes an adversarial training based framework for utterance-level dialogue generation. Technically, we train an encoder-decoder generator simultaneously with a discriminative classifier that make the utterance approximate to the state-aware inputs. Experiments on MultiWoZ 2.0 and MultiWoZ 2.1 datasets show that our method achieves advanced improvements on both automatic and human evaluations, and on the effectiveness of our framework facing low-resource. We further explore the effect of fine-grained augmentations for downstream dialogue state tracking (DST) tasks. Experimental results demonstrate the high-quality data generated by our proposed framework improves the performance over state-of-the-art models.\",\"PeriodicalId\":171614,\"journal\":{\"name\":\"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)\",\"volume\":\"619 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.seretod-1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.seretod-1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对话生成是一个具有挑战性的问题,因为它不仅需要我们模拟对话中的上下文,而且需要我们利用它来生成连贯流畅的话语。本文针对该领域的特定主题,提出了一种基于对抗性训练的话语级对话生成框架。从技术上讲,我们同时训练一个编码器-解码器生成器和一个判别分类器,使话语近似于状态感知输入。在MultiWoZ 2.0和MultiWoZ 2.1数据集上的实验表明,我们的方法在自动评估和人工评估方面都取得了很大的进步,并且在低资源情况下,我们的框架的有效性得到了提高。我们进一步探讨了细粒度增强对下游对话状态跟踪(DST)任务的影响。实验结果表明,我们提出的框架生成的高质量数据比最先进的模型提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-Aware Adversarial Training for Utterance-Level Dialogue Generation
Dialogue generation is a challenging problem because it not only requires us to model the context in a conversation but also to exploit it to generate a coherent and fluent utterance. This paper, aiming for a specific topic of this field, proposes an adversarial training based framework for utterance-level dialogue generation. Technically, we train an encoder-decoder generator simultaneously with a discriminative classifier that make the utterance approximate to the state-aware inputs. Experiments on MultiWoZ 2.0 and MultiWoZ 2.1 datasets show that our method achieves advanced improvements on both automatic and human evaluations, and on the effectiveness of our framework facing low-resource. We further explore the effect of fine-grained augmentations for downstream dialogue state tracking (DST) tasks. Experimental results demonstrate the high-quality data generated by our proposed framework improves the performance over state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信