概率验证的符号时间和空间权衡

K. Chatterjee, W. Dvořák, M. Henzinger, A. Svozil
{"title":"概率验证的符号时间和空间权衡","authors":"K. Chatterjee, W. Dvořák, M. Henzinger, A. Svozil","doi":"10.1109/LICS52264.2021.9470739","DOIUrl":null,"url":null,"abstract":"We present a faster symbolic algorithm for the following central problem in probabilistic verification: Compute the maximal end-component (MEC) decomposition of Markov decision processes (MDPs). This problem generalizes the SCC decomposition problem of graphs and closed recurrent sets of Markov chains. The model of symbolic algorithms is widely used in formal verification and model-checking, where access to the input model is restricted to only symbolic operations (e.g., basic set operations and computation of one-step neighborhood). For an input MDP with n vertices and m edges, the classical symbolic algorithm from the 1990s for the MEC decomposition requires O(n2) symbolic operations and O(1) symbolic space. The only other symbolic algorithm for the MEC decomposition requires $O(n\\sqrt m )$ symbolic operations and $O(\\sqrt m )$ symbolic space. The main open question has been whether the worst-case O(n2) bound for symbolic operations can be beaten for MEC decomposition computation. In this work, we answer the open question in the affirmative. We present a symbolic algorithm that requires $\\widetilde O\\left( {{n^{1.5}}} \\right)$ symbolic operations and $\\widetilde O\\left( {\\sqrt n } \\right)$ symbolic space. Moreover, the parametrization of our algorithm provides a trade-off between symbolic operations and esymbolic space: for all 0 < ϵ ≤ 1/2 the symbolic algorithm requires $\\widetilde O\\left( {{n^{2 - \\in }}} \\right)$ symbolic operations and $\\widetilde O\\left( {{n^ \\in }} \\right)$ symbolic space ($\\widetilde O(\\cdot)$ hides poly-logarithmic factors).Using our techniques we also present faster algorithms for computing the almost-sure winning regions of ω-regular objectives for MDPs. We consider the canonical parity objectives for ω-regular objectives, and for parity objectives with d-priorities we present an algorithm that computes the almost-sure winning region with $\\widetilde O\\left( {{n^{2 - \\in }}} \\right)$ symbolic operations and $\\widetilde O\\left( {{n^ \\in }} \\right)$ symbolic space, for all 0 < ϵ ≤ 1/2. In contrast, previous approaches require either (a) O(n2•d) symbolic operations and O(log n) symbolic space; or (b) $O(n\\sqrt m \\cdot d)$ symbolic operations and $\\widetilde O\\left( {\\sqrt m } \\right)$ symbolic space. Thus we improve the time-space product from $\\widetilde O\\left( {{n^2}\\cdot d} \\right)$ to $\\widetilde O\\left( {{n^2}} \\right)$.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"64 839 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symbolic Time and Space Tradeoffs for Probabilistic Verification\",\"authors\":\"K. Chatterjee, W. Dvořák, M. Henzinger, A. Svozil\",\"doi\":\"10.1109/LICS52264.2021.9470739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a faster symbolic algorithm for the following central problem in probabilistic verification: Compute the maximal end-component (MEC) decomposition of Markov decision processes (MDPs). This problem generalizes the SCC decomposition problem of graphs and closed recurrent sets of Markov chains. The model of symbolic algorithms is widely used in formal verification and model-checking, where access to the input model is restricted to only symbolic operations (e.g., basic set operations and computation of one-step neighborhood). For an input MDP with n vertices and m edges, the classical symbolic algorithm from the 1990s for the MEC decomposition requires O(n2) symbolic operations and O(1) symbolic space. The only other symbolic algorithm for the MEC decomposition requires $O(n\\\\sqrt m )$ symbolic operations and $O(\\\\sqrt m )$ symbolic space. The main open question has been whether the worst-case O(n2) bound for symbolic operations can be beaten for MEC decomposition computation. In this work, we answer the open question in the affirmative. We present a symbolic algorithm that requires $\\\\widetilde O\\\\left( {{n^{1.5}}} \\\\right)$ symbolic operations and $\\\\widetilde O\\\\left( {\\\\sqrt n } \\\\right)$ symbolic space. Moreover, the parametrization of our algorithm provides a trade-off between symbolic operations and esymbolic space: for all 0 < ϵ ≤ 1/2 the symbolic algorithm requires $\\\\widetilde O\\\\left( {{n^{2 - \\\\in }}} \\\\right)$ symbolic operations and $\\\\widetilde O\\\\left( {{n^ \\\\in }} \\\\right)$ symbolic space ($\\\\widetilde O(\\\\cdot)$ hides poly-logarithmic factors).Using our techniques we also present faster algorithms for computing the almost-sure winning regions of ω-regular objectives for MDPs. We consider the canonical parity objectives for ω-regular objectives, and for parity objectives with d-priorities we present an algorithm that computes the almost-sure winning region with $\\\\widetilde O\\\\left( {{n^{2 - \\\\in }}} \\\\right)$ symbolic operations and $\\\\widetilde O\\\\left( {{n^ \\\\in }} \\\\right)$ symbolic space, for all 0 < ϵ ≤ 1/2. In contrast, previous approaches require either (a) O(n2•d) symbolic operations and O(log n) symbolic space; or (b) $O(n\\\\sqrt m \\\\cdot d)$ symbolic operations and $\\\\widetilde O\\\\left( {\\\\sqrt m } \\\\right)$ symbolic space. Thus we improve the time-space product from $\\\\widetilde O\\\\left( {{n^2}\\\\cdot d} \\\\right)$ to $\\\\widetilde O\\\\left( {{n^2}} \\\\right)$.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"64 839 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种更快的符号算法,用于概率验证中的以下中心问题:计算马尔可夫决策过程(mdp)的最大端分量(MEC)分解。这个问题推广了图和马尔可夫链的闭循环集的SCC分解问题。符号算法模型广泛应用于形式验证和模型检查中,对输入模型的访问仅限于符号操作(如基本集合操作和一步邻域计算)。对于具有n个顶点和m条边的输入MDP, 20世纪90年代用于MEC分解的经典符号算法需要O(n2)个符号操作和O(1)个符号空间。MEC分解的唯一其他符号算法需要$O(n\sqrt m )$符号操作和$O(\sqrt m )$符号空间。主要的开放问题是符号操作的最坏情况O(n2)界限是否可以被MEC分解计算打败。在这项工作中,我们肯定地回答了这个悬而未决的问题。我们提出了一个需要$\widetilde O\left( {{n^{1.5}}} \right)$符号运算和$\widetilde O\left( {\sqrt n } \right)$符号空间的符号算法。此外,我们算法的参数化提供了符号操作和符号空间之间的权衡:对于所有0 < λ≤1/2,符号算法需要$\widetilde O\left( {{n^{2 - \in }}} \right)$符号操作和$\widetilde O\left( {{n^ \in }} \right)$符号空间($\widetilde O(\cdot)$隐藏了多对数因子)。使用我们的技术,我们还提出了更快的算法来计算mdp的ω-规则目标的几乎确定的获胜区域。我们考虑ω-正则目标的正则奇偶目标,对于具有d-优先级的奇偶目标,我们提出了一种算法,该算法使用$\widetilde O\left( {{n^{2 - \in }}} \right)$符号操作和$\widetilde O\left( {{n^ \in }} \right)$符号空间计算几乎确定的获胜区域,对于所有0 < λ≤1/2。相比之下,以前的方法需要(a) O(n2•d)个符号操作和O(log n)个符号空间;或者(b) $O(n\sqrt m \cdot d)$符号运算和$\widetilde O\left( {\sqrt m } \right)$符号空间。从而将时空积从$\widetilde O\left( {{n^2}\cdot d} \right)$提高到$\widetilde O\left( {{n^2}} \right)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic Time and Space Tradeoffs for Probabilistic Verification
We present a faster symbolic algorithm for the following central problem in probabilistic verification: Compute the maximal end-component (MEC) decomposition of Markov decision processes (MDPs). This problem generalizes the SCC decomposition problem of graphs and closed recurrent sets of Markov chains. The model of symbolic algorithms is widely used in formal verification and model-checking, where access to the input model is restricted to only symbolic operations (e.g., basic set operations and computation of one-step neighborhood). For an input MDP with n vertices and m edges, the classical symbolic algorithm from the 1990s for the MEC decomposition requires O(n2) symbolic operations and O(1) symbolic space. The only other symbolic algorithm for the MEC decomposition requires $O(n\sqrt m )$ symbolic operations and $O(\sqrt m )$ symbolic space. The main open question has been whether the worst-case O(n2) bound for symbolic operations can be beaten for MEC decomposition computation. In this work, we answer the open question in the affirmative. We present a symbolic algorithm that requires $\widetilde O\left( {{n^{1.5}}} \right)$ symbolic operations and $\widetilde O\left( {\sqrt n } \right)$ symbolic space. Moreover, the parametrization of our algorithm provides a trade-off between symbolic operations and esymbolic space: for all 0 < ϵ ≤ 1/2 the symbolic algorithm requires $\widetilde O\left( {{n^{2 - \in }}} \right)$ symbolic operations and $\widetilde O\left( {{n^ \in }} \right)$ symbolic space ($\widetilde O(\cdot)$ hides poly-logarithmic factors).Using our techniques we also present faster algorithms for computing the almost-sure winning regions of ω-regular objectives for MDPs. We consider the canonical parity objectives for ω-regular objectives, and for parity objectives with d-priorities we present an algorithm that computes the almost-sure winning region with $\widetilde O\left( {{n^{2 - \in }}} \right)$ symbolic operations and $\widetilde O\left( {{n^ \in }} \right)$ symbolic space, for all 0 < ϵ ≤ 1/2. In contrast, previous approaches require either (a) O(n2•d) symbolic operations and O(log n) symbolic space; or (b) $O(n\sqrt m \cdot d)$ symbolic operations and $\widetilde O\left( {\sqrt m } \right)$ symbolic space. Thus we improve the time-space product from $\widetilde O\left( {{n^2}\cdot d} \right)$ to $\widetilde O\left( {{n^2}} \right)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信