非紧半代数集上的优化问题

L. Zhi
{"title":"非紧半代数集上的优化问题","authors":"L. Zhi","doi":"10.1145/2755996.2756638","DOIUrl":null,"url":null,"abstract":"In this talk, we will introduce some recent progress in dealing with optimization problems over noncompact semialgebraic sets. We will start with the problem of optimizing a parametric linear function over a noncompact real algebraic variety. Then we will introduce how to compute the semidefinite representation or approximation of the convex hull of a noncompact semialgebraic set. Finally, we will show how to characterize the lifts of noncompact convex sets by the cone factorizations of properly defined slack operators.","PeriodicalId":182805,"journal":{"name":"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation","volume":"123 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Problems over Noncompact Semialgebraic Sets\",\"authors\":\"L. Zhi\",\"doi\":\"10.1145/2755996.2756638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we will introduce some recent progress in dealing with optimization problems over noncompact semialgebraic sets. We will start with the problem of optimizing a parametric linear function over a noncompact real algebraic variety. Then we will introduce how to compute the semidefinite representation or approximation of the convex hull of a noncompact semialgebraic set. Finally, we will show how to characterize the lifts of noncompact convex sets by the cone factorizations of properly defined slack operators.\",\"PeriodicalId\":182805,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"123 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2755996.2756638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2755996.2756638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇演讲中,我们将介绍在处理非紧半代数集上的最优化问题方面的一些最新进展。我们将从在非紧实代数变量上优化参数线性函数的问题开始。然后,我们将介绍如何计算非紧半代数集的凸包的半定表示或逼近。最后,我们将展示如何用适当定义的松弛算子的锥分解来刻画非紧凸集的提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization Problems over Noncompact Semialgebraic Sets
In this talk, we will introduce some recent progress in dealing with optimization problems over noncompact semialgebraic sets. We will start with the problem of optimizing a parametric linear function over a noncompact real algebraic variety. Then we will introduce how to compute the semidefinite representation or approximation of the convex hull of a noncompact semialgebraic set. Finally, we will show how to characterize the lifts of noncompact convex sets by the cone factorizations of properly defined slack operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信