{"title":"数据可视化","authors":"E. Sinar","doi":"10.1093/oso/9780190939717.003.0019","DOIUrl":null,"url":null,"abstract":"Data visualization—a set of approaches for applying graphical principles to represent quantitative information—is extremely well matched to the nature of survey data but often underleveraged for this purpose. Surveys produce data sets that are highly structured and comparative across groups and geographies, that often blend numerical and open-text information, and that are designed for repeated administration and analysis. Each of these characteristics aligns well with specific visualization types, use of which has the potential to—when paired with foundational, evidence-based tenets of high-quality graphical representations—substantially increase the impact and influence of data presentations given by survey researchers. This chapter recommends and provides guidance on data visualization techniques fit to purpose for survey researchers, while also describing key risks and missteps associated with these approaches.","PeriodicalId":192200,"journal":{"name":"Employee Surveys and Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Visualization\",\"authors\":\"E. Sinar\",\"doi\":\"10.1093/oso/9780190939717.003.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data visualization—a set of approaches for applying graphical principles to represent quantitative information—is extremely well matched to the nature of survey data but often underleveraged for this purpose. Surveys produce data sets that are highly structured and comparative across groups and geographies, that often blend numerical and open-text information, and that are designed for repeated administration and analysis. Each of these characteristics aligns well with specific visualization types, use of which has the potential to—when paired with foundational, evidence-based tenets of high-quality graphical representations—substantially increase the impact and influence of data presentations given by survey researchers. This chapter recommends and provides guidance on data visualization techniques fit to purpose for survey researchers, while also describing key risks and missteps associated with these approaches.\",\"PeriodicalId\":192200,\"journal\":{\"name\":\"Employee Surveys and Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Employee Surveys and Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780190939717.003.0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Employee Surveys and Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190939717.003.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data visualization—a set of approaches for applying graphical principles to represent quantitative information—is extremely well matched to the nature of survey data but often underleveraged for this purpose. Surveys produce data sets that are highly structured and comparative across groups and geographies, that often blend numerical and open-text information, and that are designed for repeated administration and analysis. Each of these characteristics aligns well with specific visualization types, use of which has the potential to—when paired with foundational, evidence-based tenets of high-quality graphical representations—substantially increase the impact and influence of data presentations given by survey researchers. This chapter recommends and provides guidance on data visualization techniques fit to purpose for survey researchers, while also describing key risks and missteps associated with these approaches.