{"title":"如果两个音乐版本不共享旋律、和声、节奏或歌词怎么办?","authors":"M. Abrassart, Guillaume Doras","doi":"10.48550/arXiv.2210.01256","DOIUrl":null,"url":null,"abstract":"Version identification (VI) has seen substantial progress over the past few years. On the one hand, the introduction of the metric learning paradigm has favored the emergence of scalable yet accurate VI systems. On the other hand, using features focusing on specific aspects of musical pieces, such as melody, harmony, or lyrics, yielded interpretable and promising performances. In this work, we build upon these recent advances and propose a metric learning-based system systematically leveraging four dimensions commonly admitted to convey musical similarity between versions: melodic line, harmonic structure, rhythmic patterns, and lyrics. We describe our deliberately simple model architecture, and we show in particular that an approximated representation of the lyrics is an efficient proxy to discriminate between versions and non-versions. We then describe how these features complement each other and yield new state-of-the-art performances on two publicly available datasets. We finally suggest that a VI system using a combination of melodic, harmonic, rhythmic and lyrics features could theoretically reach the optimal performances obtainable on these datasets.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"And what if two musical versions don't share melody, harmony, rhythm, or lyrics ?\",\"authors\":\"M. Abrassart, Guillaume Doras\",\"doi\":\"10.48550/arXiv.2210.01256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Version identification (VI) has seen substantial progress over the past few years. On the one hand, the introduction of the metric learning paradigm has favored the emergence of scalable yet accurate VI systems. On the other hand, using features focusing on specific aspects of musical pieces, such as melody, harmony, or lyrics, yielded interpretable and promising performances. In this work, we build upon these recent advances and propose a metric learning-based system systematically leveraging four dimensions commonly admitted to convey musical similarity between versions: melodic line, harmonic structure, rhythmic patterns, and lyrics. We describe our deliberately simple model architecture, and we show in particular that an approximated representation of the lyrics is an efficient proxy to discriminate between versions and non-versions. We then describe how these features complement each other and yield new state-of-the-art performances on two publicly available datasets. We finally suggest that a VI system using a combination of melodic, harmonic, rhythmic and lyrics features could theoretically reach the optimal performances obtainable on these datasets.\",\"PeriodicalId\":309903,\"journal\":{\"name\":\"International Society for Music Information Retrieval Conference\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Society for Music Information Retrieval Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.01256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.01256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
And what if two musical versions don't share melody, harmony, rhythm, or lyrics ?
Version identification (VI) has seen substantial progress over the past few years. On the one hand, the introduction of the metric learning paradigm has favored the emergence of scalable yet accurate VI systems. On the other hand, using features focusing on specific aspects of musical pieces, such as melody, harmony, or lyrics, yielded interpretable and promising performances. In this work, we build upon these recent advances and propose a metric learning-based system systematically leveraging four dimensions commonly admitted to convey musical similarity between versions: melodic line, harmonic structure, rhythmic patterns, and lyrics. We describe our deliberately simple model architecture, and we show in particular that an approximated representation of the lyrics is an efficient proxy to discriminate between versions and non-versions. We then describe how these features complement each other and yield new state-of-the-art performances on two publicly available datasets. We finally suggest that a VI system using a combination of melodic, harmonic, rhythmic and lyrics features could theoretically reach the optimal performances obtainable on these datasets.