使用双基地测量定位的近似最大似然估计

D. Fränken
{"title":"使用双基地测量定位的近似最大似然估计","authors":"D. Fränken","doi":"10.1109/SDF.2018.8547074","DOIUrl":null,"url":null,"abstract":"This paper discusses algorithms that can be used to estimate the position of an object by means of bistatic measurements. Some methods known from literature are compared with a new algorithm that is an approximation to a maximum-likelihood estimator for this non-linear localisation problem. Simulation results confirm that the proposed estimator yields errors close to Cramer-Rao lower bound for lower levels of measurement noise while still providing the best performance among the investigated algorithms when the statistical errors on the measurements become large.","PeriodicalId":357592,"journal":{"name":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"86 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An approximate maximum-likelihood estimator for localisation using bistatic measurements\",\"authors\":\"D. Fränken\",\"doi\":\"10.1109/SDF.2018.8547074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses algorithms that can be used to estimate the position of an object by means of bistatic measurements. Some methods known from literature are compared with a new algorithm that is an approximation to a maximum-likelihood estimator for this non-linear localisation problem. Simulation results confirm that the proposed estimator yields errors close to Cramer-Rao lower bound for lower levels of measurement noise while still providing the best performance among the investigated algorithms when the statistical errors on the measurements become large.\",\"PeriodicalId\":357592,\"journal\":{\"name\":\"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"86 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2018.8547074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2018.8547074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了通过双基地测量来估计目标位置的算法。将文献中已知的一些方法与一种新的算法进行了比较,该算法近似于该非线性局部化问题的最大似然估计。仿真结果表明,对于较低水平的测量噪声,所提出的估计器产生的误差接近Cramer-Rao下界,而当测量的统计误差变大时,所研究的算法仍然具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximate maximum-likelihood estimator for localisation using bistatic measurements
This paper discusses algorithms that can be used to estimate the position of an object by means of bistatic measurements. Some methods known from literature are compared with a new algorithm that is an approximation to a maximum-likelihood estimator for this non-linear localisation problem. Simulation results confirm that the proposed estimator yields errors close to Cramer-Rao lower bound for lower levels of measurement noise while still providing the best performance among the investigated algorithms when the statistical errors on the measurements become large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信