大型卡车多车碰撞:随机参数离散结果建模方法

Mouyid Islam
{"title":"大型卡车多车碰撞:随机参数离散结果建模方法","authors":"Mouyid Islam","doi":"10.5399/OSU/JTRF.54.1.4273","DOIUrl":null,"url":null,"abstract":"A growing concern on large-truck crashes increased over the years due to the potential economic impacts and level of injury severity. This study aims to analyze the injury severities of multivehicle large-trucks crashes on national highways. To capture and understand the complexities of contributing factors, two random parameter discrete outcome models – random parameter ordered probit and mixed logit – were estimated to predict the likelihood of five injury severity outcomes: fatal, incapacitating, non-incapacitating, possible injury, and no-injury. Estimation findings indicate that the level of injury severity is highly influenced by a number of complex interactions of factors, namely, human, vehicular, road-environmental, and crash dynamics that can vary across the observations.","PeriodicalId":405535,"journal":{"name":"Journal of the Transportation Research Forum","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach\",\"authors\":\"Mouyid Islam\",\"doi\":\"10.5399/OSU/JTRF.54.1.4273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A growing concern on large-truck crashes increased over the years due to the potential economic impacts and level of injury severity. This study aims to analyze the injury severities of multivehicle large-trucks crashes on national highways. To capture and understand the complexities of contributing factors, two random parameter discrete outcome models – random parameter ordered probit and mixed logit – were estimated to predict the likelihood of five injury severity outcomes: fatal, incapacitating, non-incapacitating, possible injury, and no-injury. Estimation findings indicate that the level of injury severity is highly influenced by a number of complex interactions of factors, namely, human, vehicular, road-environmental, and crash dynamics that can vary across the observations.\",\"PeriodicalId\":405535,\"journal\":{\"name\":\"Journal of the Transportation Research Forum\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Transportation Research Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5399/OSU/JTRF.54.1.4273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Transportation Research Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5399/OSU/JTRF.54.1.4273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

多年来,由于潜在的经济影响和伤害严重程度,对大型卡车碰撞的关注日益增加。本研究旨在分析国道上多车大型货车碰撞的伤害严重程度。为了捕捉和理解影响因素的复杂性,我们估计了两个随机参数离散结果模型——随机参数有序probit和混合logit——来预测五种损伤严重程度结果的可能性:致命、丧失行为能力、非丧失行为能力、可能伤害和无伤害。估计结果表明,损伤严重程度受到许多因素的复杂相互作用的高度影响,即人、车辆、道路环境和碰撞动力学,这些因素在观察过程中可能会有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach
A growing concern on large-truck crashes increased over the years due to the potential economic impacts and level of injury severity. This study aims to analyze the injury severities of multivehicle large-trucks crashes on national highways. To capture and understand the complexities of contributing factors, two random parameter discrete outcome models – random parameter ordered probit and mixed logit – were estimated to predict the likelihood of five injury severity outcomes: fatal, incapacitating, non-incapacitating, possible injury, and no-injury. Estimation findings indicate that the level of injury severity is highly influenced by a number of complex interactions of factors, namely, human, vehicular, road-environmental, and crash dynamics that can vary across the observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信