黎曼初始数据下全可压缩Navier-Stokes方程的零耗散极限

F. Huang, Song Jiang, Yi Wang
{"title":"黎曼初始数据下全可压缩Navier-Stokes方程的零耗散极限","authors":"F. Huang, Song Jiang, Yi Wang","doi":"10.4310/CIS.2013.V13.N2.A5","DOIUrl":null,"url":null,"abstract":"We consider the zero dissipation limit of the full compressible Navier-Stokes equations with Riemann initial data in the case of superposition of two rarefaction waves and a contact discontinuity. It is proved that for any suitably small viscosity $\\varepsilon$ and heat conductivity $\\kappa$ satisfying the relation \\eqref{viscosity}, there exists a unique global piecewise smooth solution to the compressible Navier-Stokes equations. Moreover, as the viscosity $\\varepsilon$ tends to zero, the Navier-Stokes solution converges uniformly to the Riemann solution of superposition of two rarefaction waves and a contact discontinuity to the corresponding Euler equations with the same Riemann initial data away from the initial line $t=0$ and the contact discontinuity located at $x=0$.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"538 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data\",\"authors\":\"F. Huang, Song Jiang, Yi Wang\",\"doi\":\"10.4310/CIS.2013.V13.N2.A5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the zero dissipation limit of the full compressible Navier-Stokes equations with Riemann initial data in the case of superposition of two rarefaction waves and a contact discontinuity. It is proved that for any suitably small viscosity $\\\\varepsilon$ and heat conductivity $\\\\kappa$ satisfying the relation \\\\eqref{viscosity}, there exists a unique global piecewise smooth solution to the compressible Navier-Stokes equations. Moreover, as the viscosity $\\\\varepsilon$ tends to zero, the Navier-Stokes solution converges uniformly to the Riemann solution of superposition of two rarefaction waves and a contact discontinuity to the corresponding Euler equations with the same Riemann initial data away from the initial line $t=0$ and the contact discontinuity located at $x=0$.\",\"PeriodicalId\":185710,\"journal\":{\"name\":\"Commun. Inf. Syst.\",\"volume\":\"538 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commun. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CIS.2013.V13.N2.A5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2013.V13.N2.A5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

研究了具有黎曼初始数据的两稀疏波叠加和接触不连续的完全可压缩Navier-Stokes方程的零耗散极限。证明了对于任意满足关系\eqref{viscosity}的适当小的粘度$\varepsilon$和导热系数$\kappa$,存在唯一的可压缩Navier-Stokes方程的全局分段光滑解。此外,当粘度$\varepsilon$趋于零时,Navier-Stokes解均匀收敛于远离初始线$t=0$且接触不连续点位于$x=0$的具有相同黎曼初始数据的对应欧拉方程的两个稀疏波叠加和一个接触不连续点的黎曼解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data
We consider the zero dissipation limit of the full compressible Navier-Stokes equations with Riemann initial data in the case of superposition of two rarefaction waves and a contact discontinuity. It is proved that for any suitably small viscosity $\varepsilon$ and heat conductivity $\kappa$ satisfying the relation \eqref{viscosity}, there exists a unique global piecewise smooth solution to the compressible Navier-Stokes equations. Moreover, as the viscosity $\varepsilon$ tends to zero, the Navier-Stokes solution converges uniformly to the Riemann solution of superposition of two rarefaction waves and a contact discontinuity to the corresponding Euler equations with the same Riemann initial data away from the initial line $t=0$ and the contact discontinuity located at $x=0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信