使用密度匹配和形状先验跟踪对象

Zhang Tao, D. Freedman
{"title":"使用密度匹配和形状先验跟踪对象","authors":"Zhang Tao, D. Freedman","doi":"10.1109/ICCV.2003.1238466","DOIUrl":null,"url":null,"abstract":"We present a novel method for tracking objects by combining density matching with shape priors. Density matching is a tracking method which operates by maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Such trackers can be expressed as PDE-based curve evolutions, which can be implemented using level sets. Shape priors can be combined with this level-set implementation of density matching by representing the shape priors as a series of level sets; a variational approach allows for a natural, parametrization-independent shape term to be derived. Experimental results on real image sequences are shown.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Tracking objects using density matching and shape priors\",\"authors\":\"Zhang Tao, D. Freedman\",\"doi\":\"10.1109/ICCV.2003.1238466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for tracking objects by combining density matching with shape priors. Density matching is a tracking method which operates by maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Such trackers can be expressed as PDE-based curve evolutions, which can be implemented using level sets. Shape priors can be combined with this level-set implementation of density matching by representing the shape priors as a series of level sets; a variational approach allows for a natural, parametrization-independent shape term to be derived. Experimental results on real image sequences are shown.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

提出了一种将密度匹配与形状先验相结合的目标跟踪方法。密度匹配是一种通过最大化估计图像区域的光度分布与模型光度分布之间的Bhattacharyya相似度量来进行跟踪的方法。这种跟踪器可以表示为基于pde的曲线演化,可以使用水平集实现。形状先验可以通过将形状先验表示为一系列水平集来与密度匹配的水平集实现相结合;变分方法允许一个自然的,参数化无关的形状项被导出。给出了在真实图像序列上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking objects using density matching and shape priors
We present a novel method for tracking objects by combining density matching with shape priors. Density matching is a tracking method which operates by maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Such trackers can be expressed as PDE-based curve evolutions, which can be implemented using level sets. Shape priors can be combined with this level-set implementation of density matching by representing the shape priors as a series of level sets; a variational approach allows for a natural, parametrization-independent shape term to be derived. Experimental results on real image sequences are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信