研究使用散射系数重放攻击检测

Kaavya Sriskandaraja, Gajan Suthokumar, V. Sethu, E. Ambikairajah
{"title":"研究使用散射系数重放攻击检测","authors":"Kaavya Sriskandaraja, Gajan Suthokumar, V. Sethu, E. Ambikairajah","doi":"10.1109/APSIPA.2017.8282211","DOIUrl":null,"url":null,"abstract":"Widespread adoption of speaker verification for security relies on the existence of effective anti-spoofing countermeasures. This paper presents a countermeasure based on spectral features to detect replay spoofing attacks on automatic speaker verification systems. In particular, the use of hierarchical scattering decomposition coefficients and inverse- mel frequency cepstral coefficients are explored. Our best system achieved a relative improvement of around 70% in terms of equal error rate on the development set and 20% on the evaluation set, when compared to the baseline on the ASVspoof 2017 database. In addition, we show that features with a shorter window can be beneficial to detecting replayed speech, in contrast to speech synthesis and voice conversion attack.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Investigating the use of scattering coefficients for replay attack detection\",\"authors\":\"Kaavya Sriskandaraja, Gajan Suthokumar, V. Sethu, E. Ambikairajah\",\"doi\":\"10.1109/APSIPA.2017.8282211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Widespread adoption of speaker verification for security relies on the existence of effective anti-spoofing countermeasures. This paper presents a countermeasure based on spectral features to detect replay spoofing attacks on automatic speaker verification systems. In particular, the use of hierarchical scattering decomposition coefficients and inverse- mel frequency cepstral coefficients are explored. Our best system achieved a relative improvement of around 70% in terms of equal error rate on the development set and 20% on the evaluation set, when compared to the baseline on the ASVspoof 2017 database. In addition, we show that features with a shorter window can be beneficial to detecting replayed speech, in contrast to speech synthesis and voice conversion attack.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

说话人验证的广泛采用依赖于有效的反欺骗对策的存在。提出了一种基于频谱特征的语音自动验证系统重放欺骗攻击检测方法。特别探讨了分层散射分解系数和逆模频率倒谱系数的应用。与ASVspoof 2017数据库的基线相比,我们最好的系统在开发集的平均错误率方面实现了大约70%的相对改进,在评估集上实现了20%的相对改进。此外,我们表明,与语音合成和语音转换攻击相比,具有较短窗口的特征有利于检测重放语音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the use of scattering coefficients for replay attack detection
Widespread adoption of speaker verification for security relies on the existence of effective anti-spoofing countermeasures. This paper presents a countermeasure based on spectral features to detect replay spoofing attacks on automatic speaker verification systems. In particular, the use of hierarchical scattering decomposition coefficients and inverse- mel frequency cepstral coefficients are explored. Our best system achieved a relative improvement of around 70% in terms of equal error rate on the development set and 20% on the evaluation set, when compared to the baseline on the ASVspoof 2017 database. In addition, we show that features with a shorter window can be beneficial to detecting replayed speech, in contrast to speech synthesis and voice conversion attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信