{"title":"基于GMM背景减法的离散运动模型集成","authors":"Christian Wolf, J. Jolion","doi":"10.1109/ICPR.2010.11","DOIUrl":null,"url":null,"abstract":"GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa's convex graph cuts algorithm.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Integrating a Discrete Motion Model into GMM Based Background Subtraction\",\"authors\":\"Christian Wolf, J. Jolion\",\"doi\":\"10.1109/ICPR.2010.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa's convex graph cuts algorithm.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating a Discrete Motion Model into GMM Based Background Subtraction
GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa's convex graph cuts algorithm.